Functional Electrical Stimulation Therapy Improves Grasping in Chronic Cervical Spinal Cord Injury: Two Case Studies

Rosalynn C. Miller¹, Milos R. Popovic¹², T. Adam Thrasher³ and Molly Verrier¹³

Abstract — OBJECTIVE AND IMPORTANCE: To present case studies of two individuals with chronic cervical spinal cord injury (SCI) who participated in functional electrical stimulation (FES) therapy with the objective to restore voluntary grasp function. CLINICAL PRESENTATION: Both individuals (right hand dominant males, age 24 and 31) had sustained a cervical SCI (C6 and C4-5, respectively) at least 8 years prior to participation in this study. INTERVENTION: Both individuals participated in an individualized FES therapy program for 6 weeks. FES therapy was administered through a regimen of three, one-hour sessions, per week for three months. A single arm of each participant (n = 2) was treated. FES therapy is an integrative intervention strategy combining muscle strengthening, functional movement training and stretching. The participant’s hand movement abilities were assessed pre and post FES therapy using the Manual Muscle Test (MMT), a modified Sollerman Hand Function Test (mSHFT), and the Reach, Grasp, Transport and Release Task (RGTR). DISCUSSION: As the injuries of participants in the current study were chronic and thus neurologically stable, no spontaneous improvements/recovery in hand function was expected. However, FES as part of an integrated therapeutic approach affected restoration and improvement of hand function in both participants. CONCLUSION: The concurrent improvement in strength, integrated motor function and object contact following FES therapy, demonstrated that there is potential for affecting change in hand function of individuals with chronic SCI.

Index Terms — chronic spinal cord injury, functional electrical stimulation therapy, hand function, restoration of voluntary function.

I. INTRODUCTION

SPINAL cord injury (SCI) results in the impairment of motor and/or sensory function below and at the level of injury. The extent of an individual’s impairment varies according to the level, location and severity of the injury. Seventy-three percent of all SCI patients show some degree of neural recovery with associated gains in activities of daily living (ADL) [1]. Most neurological return occurs within the first year after the SCI [2]. Recovery occurs most rapidly in the first six months, and continues at a slower pace for up to two years [2]. In Canada and the United States of America, there are about 11,000 new SCIs per year and approximately 240,000 individuals who are living with a chronic SCI [3]. Individuals with cervical SCI (approximately 50 % of the SCI population) consider recovery in their upper extremities most important [4,5]. The ability of an individual to effectively use the hand is critical to his or her independence [6]. Although biological mechanisms for upper extremity recovery following cervical SCI are poorly understood [7], it has been stated that disproportionate functional benefits can be gained from minor neuromuscular gains [8]. Furthermore, small improvements in the ability to perform daily activities can have large impact on quality of life for individuals recovering from SCI [9]. Additionally, there have been reports of late recovery occurring in individuals with SCI [10,11].

Current rehabilitation procedures aim to minimize the negative effects of immobilization, to prevent complications, and to teach individuals independence in ADL [12]. The muscular systems below the level of SCI receive limited attention during rehabilitation. Rehabilitation of sensorimotor function is achieved through adaptation (e.g., application of an orthosis) and compensation (e.g., training new muscle synergies) [13]. Strategies that aim to improve upper extremity motor abilities of individuals with SCI and that use electrical stimulation include: conventional therapy, biofeedback, electrical stimulation and functional electrical stimulation (FES). These strategies are often combined and customized to the participant’s functional abilities and goals and modified as motor recovery occurs.

FES uses trains of small electrical impulses to generate muscle contractions to achieve meaningful movements (i.e., palmar grasp) and FES has been used in the clinical care of individuals with SCI chiefly as a means to facilitate movement of the upper and lower extremities [14]. In recent years, there have been several reports of the recovery of voluntary movement in both the upper [14-17] and lower extremities [10,11,30] of individuals with SCI after repeated use of FES. The building evidence of restoration of movement ability at or below the level of injury, regardless of time since injury, encouraged the investigation of FES as a component of therapeutic intervention.

FES therapy is an integrative intervention strategy combining muscle strengthening, functional movement training, and stretching used both to facilitate muscle strengthening and functional training. Due to the customized
progressive nature of FES therapy, the ratio of time, as well as the duration of the session, may vary to ensure that participants receive the amount of therapy that may maximize their potential recovery without causing undue fatigue. The construct of FES therapy encompasses multiple aspects of established rehabilitation strategies (Figure 1).

Specifically, the FES therapy presented in this paper focuses on attempting to assist individuals with chronic cervical SCI to improve their hand function. Hand function is the integrated capacity of an individual to sense, generate force, move, and sustain movement and force against loads. Restoration of hand function is important to individuals with cervical SCI as it provides more independence through the ability to perform ADL; thus, increasing the quality of life [6].

Restoration of hand function is important to individuals with cervical SCI to improve their hand function. Hand function as the duration of the session, may vary to ensure that participants receive the amount of therapy that may maximize their potential recovery without causing undue fatigue. The construct of FES therapy encompasses multiple aspects of established rehabilitation strategies (Figure 1).

Specifically, the FES therapy presented in this paper focuses on attempting to assist individuals with chronic cervical SCI to improve their hand function. Hand function is the integrated capacity of an individual to sense, generate force, move, and sustain movement and force against loads. Restoration of hand function is important to individuals with cervical SCI as it provides more independence through the ability to perform ADL; thus, increasing the quality of life [6].

B. Assessments and Outcome Measures

Each participant’s neurological level of injury and level of independence were assessed using AIS [18] and the Spinal Cord Independence Measure (SCIM) [19], respectively. Participants were required to have functional biceps and deltoid muscle activation (i.e., AIS individual muscle motor score of three or more), which ensured the placement of their hand in the working space and enabled participation in the functional training paradigm. The individual’s hand movement abilities were assessed using the Manual Muscle Test (MMT) [20], a modified Sollerman Hand Function Test (mSHFT) [21], and the Reach, Grasp, Transport and Release Task (RGTR) [22].

A single arm of each participant (n = 2) was treated. The decision on which arm to treat was determined by the research team after an extensive participant interview to determine motivation to participate, and neurological and electromyographic evaluation. The arm to be treated had to have a positive muscular response to electrical stimulation.

To determine if the observed changes were significant the literature was reviewed to determine significance levels for change scores for MMT and mSHFT that are considered indicative of an actual functional change in hand function. According to the published reliability data of MMT [20], and mSHFT [29] tests, the levels of change in score that were considered significant for both tests were set to greater than 2 for MMT, and greater than 2 for each item of the mSHFT.

The three groupings of muscles were examined by MMT were as follows: the muscles controlling the movement of the wrist, thumb and fingers. Due to the varying degrees in complexity and variability with testing the different groupings of muscles, each muscle group was evaluated separately. The scoring system used was as follows: 0=no palpable contraction; 1=palpable contraction; 2=complete range of motion (ROM) with gravity eliminated; 3=complete ROM against gravity; 4=complete ROM against gravity and against some resistance; and 5=normal, complete ROM against gravity and against full resistance. Further in regard to the muscles that control the actions of the fingers (which had the largest number of muscles tested, as shown in Table 2) were also grouped by muscle that received direct stimulation or were trained with the FES therapy paradigm. A probability estimate was then calculated for those muscles in both the treated and untreated limb, where the frequency of the muscles with a change in score greater than two was counted, enabling the treatment effect to be examined.

The tasks in the mSHFT were placed into one of five groups according to the movement involved in performing the task. The groups are as follows: 1) tenodesis grasps: pick up a crumpled piece of paper (Task1) and pick up thick marker (Task 2); 2) active finger flexion and co-activation of thumb and finger flexor strength: turn a key in a Yale lock 90 degrees (Task 3); 3) pinch grasps: pick up a 1”X1” block (Tasks 4), write a word on paper using unmodified pen (Task 5) and pick up a 5”X5” block (Task 6); 4) active finger extension and wrist rotation: unscrew lid of jars (Task 7); and 5) active finger flexion and strength: turn screw with screwdriver (Task 8) and lift iron over edge of mSHFT box (Task 9). The scoring of these tasks was as follows: 0=unable to complete the task; 1=partially complete task without prescribed grip; 2=partially completes task with prescribed grip; 3=completes the task without the prescribed grip; 4=completes the task with the prescribed grip but with unrefined movement; 5=completes task with the prescribed grip in a normal fashion.

Figure 1: FES therapy construct

II. METHODS

A. Participants

Two case studies are presented in this paper. Both individuals (right hand dominant males) had a cervical SCI. Participant 1 (P1) was 24 years old, and his injury occurred in the C6 region (AIS B) nine years prior to this study (American Spinal Injury Association (ASIA) Impairment Scale (AIS)) [18]. Participant 2 (P2) was 31 years old, and his injury occurred in the C6 region (AIS B) nine years prior to this study (Table 1).

<table>
<thead>
<tr>
<th>Participant’s Clinical Information</th>
<th>Participant 1</th>
<th>Participant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>24 years</td>
<td>31 years</td>
</tr>
<tr>
<td>Duration of Injury</td>
<td>9 years</td>
<td>8 years</td>
</tr>
<tr>
<td>AIS Classification</td>
<td>C6 AIS B</td>
<td>C4-C5 AIS C</td>
</tr>
<tr>
<td>SCIM Score</td>
<td>68/100</td>
<td>42/100</td>
</tr>
</tbody>
</table>

Figure 1: FES therapy construct
Table 2: Muscles Assessed (MMT), *denotes change expected

<table>
<thead>
<tr>
<th>FINGERS *</th>
<th>THUMB *</th>
<th>WRIST *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Flexor Digitorum Superficialis (FDS)*</td>
<td>Flexor Pollicis Brevis (FPB)*</td>
<td>Wrist Flexors (WF)*</td>
</tr>
<tr>
<td>2 Flexor Digitorum Profundus (FDP)*</td>
<td>Flexor Pollicis Longus (FPL)</td>
<td>Wrist Extensors (WE)*</td>
</tr>
<tr>
<td>3 Extensor Digitorum (ED)*</td>
<td>Abductor Pollicis Brevis (AbPB)*</td>
<td></td>
</tr>
<tr>
<td>4 Extensor Minimus (EM)*</td>
<td>Abductor Pollicis Longus (AbPL)</td>
<td></td>
</tr>
<tr>
<td>5 Extensor Indicis (EI)*</td>
<td>Extensor Pollicis Brevis (EPB)</td>
<td></td>
</tr>
<tr>
<td>6 IP Extensors – Lumbricals (LUM)*</td>
<td>Extensor Pollicis Longus (EPL)</td>
<td></td>
</tr>
<tr>
<td>7 Adductors – Palmar Interossi (PI)</td>
<td>Opponens Pollicis (OP)</td>
<td></td>
</tr>
<tr>
<td>8 Adductors – Dorsal Interossi (DI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Abductor Digiti Minimi (AbDM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Opponens Digitii Minimi (ODM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Reach, Grasp, Transport and Release Task (RGTR): a) This photograph captures the main components of the RGTR system, which are: 1) instrumented wooden block with FSRs, 2) Fastrak (Polhemus Inc., USA) sensor for measuring finger kinematics and four 6 degrees of freedom sensors which were placed on the index finger, thumb, back of the palm and upper arm (not show on this figure but shown on the remaining three), 3) shelf (C), and 4) two locations where the instrumented wooden block can be placed (A) and (B). b-d) These figures show how the objects is manipulated during RGTR test in a sequence b-c-d.

Figure 2: The Reach, Grasp, Transport and Release Task (RGTR): a) This photograph captures the main components of the RGTR system, which are: 1) instrumented wooden block with FSRs, 2) Fastrak (Polhemus Inc., USA) sensor for measuring finger kinematics and four 6 degrees of freedom sensors which were placed on the index finger, thumb, back of the palm and upper arm (not show on this figure but shown on the remaining three), 3) shelf (C), and 4) two locations where the instrumented wooden block can be placed (A) and (B). b-d) These figures show how the object is manipulated during RGTR test in a sequence b-c-d.

The Reach, Grasp, Transport and Release Task (RGTR) [22] consists of grasping a small wooden block (approximately the size of a VHS tape) in one of two positions (see Figure 2 – (A) and (B) positions). Each trial consisted of: a) 5 movements where the wooden object was grasped in position (A), placed on the highest shelf possible and back to the position (A); and b) 5 movements where the wooden object was grasped in position (B), placed on the highest shelf possible and back to the position (B). The initial placement and the order of placement in positions (A) and (B) was random. Forces Sensitive Resistors (FSRs) were used to measure the force production of the thumb, index and middle digits during the RGTR. A custom designed data analysis program was used to score the participants’ ability to maintain successful contact with the object. Successful contact with the object was determined by examining the force profiles produced when the participants performed the task properly. This requires the ability to co-activate the finger and thumb flexors while the wrist is in either an extended or neutral position for the duration of the grasp and transport portion of the RGTR task.

The RGTR data, which captured arm and hand kinematics during reaching and grasping as well as the grip force, was divided into kinematic and FSR data. For the purposes of this paper only the FSR data is reported. The FSR data comprises of outputs from two FSR sensors which were used to measure the grip force. The FSR data were filtered with a 4th order Butterworth filter with no phase lag and a cutoff frequency of 10 Hz [23,24]. The onset of grasp was determined when two opposing FSR signals exceeded 1 V, and the completion of grasp was determined when either of the FSR signals fell below 1 V. Variability was defined as the + 1 standard deviation (SD) of the FSR signal during the grasp. The first 10 FSR data points (0.2 s) and the last 10 FSR data points of each grasp were excluded from the SD calculation, as they represent the transient rise and fall time when the grasp was not in steady-state. Grasps of duration less than 1.0 s were considered too brief to achieve steady-state and were excluded from the analysis. Additionally, the grasps that were successful (as determined by the above criteria) were tallied and submitted to a Student’s t-test with a significance level set at p<0.05 for comparison pre-post analysis.

It was determined that within the able-bodied age matched controls there were no differences in the FSR variability or task success regardless of the hand used in the task or with time. Additionally, it was determined, that able-bodied individuals produce a significantly more variable force (p < 0.0001) than individuals with a cervical SCI. Therefore, this method of analysis was used for the individuals with SCI, to determine if FES treatment would alter FSR variability for each participant.

Repeated measures ANOVA was performed on the variability of both FSR signals. Two factors were considered: hand (treated vs. untreated) and time of measurement (before vs. after treatment). Statistical significance level was set at p<0.05.
and Toronto Rehabilitation Institute Ethics Boards, both individuals attended 18 one-hour FES therapy sessions over approximately three months.

C. FES Therapy

The following is an example how FES therapy was employed in this study. Each participant in the study was asked to execute a one-handed task (eg. reaching and grasping a cup). The participant would first try to execute the task unassisted. The components/sequences of the task that the participant was unable to perform were assisted by the FES system. Hence, the functional training began by designing a stimulation protocol that could assist or generate a palmar and/or the lateral grasp on demand. In other words, the stimulation sequence (protocol) was developed for each participant individually using a Compex Motion stimulator (Compex SA, Switzerland)[31] that allowed the participant, who otherwise could not grasp, to do so with the FES system. No splinting was used during the application of FES therapy. The electrodes were placed with great care to ensure that all movements were functional, efficient and used normal movement patterns.

Once the individualized FES protocol for grasping was developed the participant was trained with the system to perform only the desired movements. Therefore, it was not necessary to block wrist flexion or extension. The command for activating the stimulation sequence was issued with a push button. By pressing a button, the participant controlled hand opening and closing. Stimulation parameters and the list of muscles that were stimulated during the study for each participant are presented in Tables 3 and 4.

Tables 3 and 4: Delineate between muscle groups where existing movement was strengthened and where acquisition of movement was attempted. In addition the mean stimulation amplitude for the muscle and/or nerve is given. *ED: Extensor digitorum, MN: Median nerve, FDS: Flexor digitorum superficialis, FDP: Flexor digitorum profundus.

III. RESULTS

A. Participant 1

The AIS examination assessed Participant 1 as having a C6 sensory incomplete (AIS B) SCI. His SCIM score was 68/100. Neither of these assessment scores changed following the three months of FES therapy.

Table 4: Participant 2 - FES Therapy Details

<table>
<thead>
<tr>
<th>Duration</th>
<th>May 6, 2004 – Aug 23, 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Treated</td>
<td>Left</td>
</tr>
<tr>
<td>FES Therapy</td>
<td>Strengthen Wrist extensors</td>
</tr>
<tr>
<td></td>
<td>Acquire Wrist flexors Digit 1-5 extensors</td>
</tr>
<tr>
<td>FES Parameters</td>
<td>General Balanced biphasic pulse, width of 300 µs and a frequency of 40 Hz, self paced blocked on/off cycle</td>
</tr>
<tr>
<td></td>
<td>Motor Stimulation (pulse amplitude mA)</td>
</tr>
<tr>
<td></td>
<td>*ED (15.7 ± 2.3)</td>
</tr>
<tr>
<td></td>
<td>*Median Nerve (MN) Thumb (11.1 ± 1.2)</td>
</tr>
<tr>
<td></td>
<td>*FDS (16.5 ± 2.4)</td>
</tr>
<tr>
<td></td>
<td>*MN: Finger and Thumb (12.2 ± 1.1)</td>
</tr>
</tbody>
</table>

Tables 3 and 4: Delineate between muscle groups where existing movement was strengthened and where acquisition of movement was attempted. In addition the mean stimulation amplitude for the muscle and/or nerve is given. *ED: Extensor digitorum, MN: Median nerve, FDS: Flexor digitorum superficialis, FDP: Flexor digitorum profundus.

Figure 3: Average MMT Change Scores by Muscle for the Fingers (Participant 1): Untreated hand has no increases in MMT scores. * Denotes a change in score greater or equal to two for the treated wrist. FDS: flexor digitorum profundus, FDP: flexor digitorum profundus, ED: extensor digitorum, EM: extensor minimus EI: extensor indicis, LUM: lumbricals, PI: palmar interossi, DI: dorsal interossi, ADM: abductor digitii minimi, ODM: opponens digitii minimi. Dashed line represents the preselected level of change required for any change to be considered actual change.
MMT of the wrist and the thumb of both the treated (T) and untreated (UT) limb demonstrated no change in score (less than or equal to 2).

A frequency count was performed on the muscles of the fingers in both the treated and untreated hand. In Participant 1’s untreated hand, 3 out of 27 muscles had increases in MMT score of two or more and one muscle had a decrease of two or more. In Participant 1’s treated hand, 12 out of 27 muscles had increases in MMT score of two or more, 11 of these were included in the grouping of muscles that were hypothesized to change due to participation in FES therapy. Note that none of 27 muscles had decrease in MMT scores. Therefore, 61% of the muscles expected had increases of strength greater than two. In addition, a muscle (opponens digiti minimi) outside of the grouping of muscles where change was expected also had an increase in MMT strength score of two or more. The muscles across the digits were then combined in an effort to capture the adaptation in a given muscle; the results are presented in Figure 3.

When the results of the mSHFT were examined according to the task groups determined a priori, none of the tasks had a change in score of two or more in the untreated limb. The treated limb demonstrated in two of the three tasks (both of which require high skill and strength levels of the finger flexor muscles).

The RGTR task revealed that participation in FES therapy resulted in an increased ability of the participant to maintain successful object contact during the RGTR. Participant 1 had a significant increase in successful object contact scores in the arm that received the FES therapy (Treated limb p \leq 0.001) as previously reported [22].

In an effort to quantify the quality of force during the grasp and transport section of the RGTR task, the FSR signal variability was examined as outlined in the methods section of this paper. As presented in Figure 5, Participant 1 had a significant decrease in finger sensor FSR variability indicating that there was a consistent force related increase in the finger contact.

B. Participant 2

Participant 2 has had a C4-5 motor incomplete (AIS C) SCI. The SCIM score was 42/100. Neither of these assessments changed following the three months of FES therapy. MMT of the wrist and the thumb of both the treated (T) and untreated (UT) limb demonstrated no change in score.

A frequency count was performed for the MMT data for the muscles controlling the movements of the fingers in both
the treated and untreated hands (27 muscles per hand) finger
digits were tested independently. In Participant 2’s untreated
hand, none of the muscles examined showed increases in
MMT scores of two or more. Participant 2’s program was
designed to attempt movement acquisition in digit II-V
flexors and extensors. Following FES therapy, this
individual had 4/27 muscles (assessed across four digits)
controlling the movements on his fingers which had an
increase in MMT score of two or more. Additionally, none
of the muscles on his untreated hand had an increase of
MMT score. The MMT muscles scores for each the digits
were then combined in an effort to capture the adaptation in
a given muscle (Figure 6), showing that although neither the
treated of untreated limbs had change sufficiently enough to
met the a priori level of actual change, the treated hand
generally showed more change that the untreated hand.

The mSHFT scores for Participant 2 are presented in
Figure 7.

Figure 7: Modified SHFT Results (Participant 2): Two of
three tasks that were hypothesized to change had an increase
in score of two. * Denotes a change of two or more. Group
1 = tenodesis grasps, Group 2 = active finger flexion, Group
3 = pinch grasps, Group 4 = active finger extension and
wrist ulnar and radial deviation, Group 5 = strong finger
flexion.

When the tasks were examined according to the motor
control involved, it was found that none of the tasks in the
untreated limb had a change of score of two of more. The
treated limb demonstrated in two of the three tasks (both of
which require high skill and strength levels of the finger
flexor muscles) had an improvement in score of two or
more.

Participant 2 had a significant increase in successful
object contact scores in the arm that received the therapy
(Treated limb p = 0.046) as previously reported [22] in the
RGTR task.

The FSR signal variability was examined, as outlined in
the methods section of this paper, to quantify the quality of
force during the grasp and transport component of the
RGTR task. As presented in Figure 8, Participant 2 had a

significant increase in thumb sensor FSR variability in the
untreated limb, meaning that there was a more consistent
force related increase in the thumb contact.

Figure 8: P2 FSR variability during the RGTR task

Force variability has been shown to increase
monotonically with mean force in the able-bodied
population [26]. Therefore, a more forceful grip will yield a
greater measure of variability. In the literature it has been
proposed that increase in force variability with strength can
be compensated for by normalizing the standard deviation
by dividing it with the mean force value [27]. In the present
study we have not performed the proposed normalization
because the output of the FSRs used in the study did not
have a liner relationship between the force and the FSRs’
voltage output, i.e., the sensitivity of the measured
decreased as force increased.

Although both participants had differing deficits and
consequently requiring different FES therapy strategies,
both individuals had simil ar responses to FES therapy,
(Table 5). There was an increase in strength for the FES
treated muscles. Additionally, the increase in strength
appeared to affect the both individuals ability to perform
integrated motor tasks as well as grasp performance.

IV. DISCUSSION

A. Wrist Strength

While neither participant experienced increases in MMT
scores (greater than 2), in muscles of the wrist, it is
important to note that the initial raw MMT scores of both
individuals were three or more. According to Schwartz et al.
(1992) once an individual has good movement (movement
against gravity - which both participants had) the MMT has
been shown to be less sensitive to changes in muscle
strength [20]. Therefore, it could be that individuals who
participated in the present study had changes in wrist flexor
and extensor strength, but the measurement approach was
not sensitive enough to detect potential changes. Alternatively, no significant change occurred in the wrist
muscles.

B. Thumb Strength

Likewise, there were no demonstrated increases in
strength in muscles controlling the action of the thumb. There are three possible explanations for the lack of change in the MMT scores in the muscles controlling the action of the thumb: 1) no change occurred, 2) inconsistent stimulation response, and/or 3) measurement error (measurement sensitivity). Which one of the three possible explanations is the appropriate one cannot determine at this point in time because of the way the study was carried out.

MMT is a surrogate measure for force generation, but it does not measure actual function restoration. None the less both participants, who initially demonstrated poor voluntary activation (at best a palpable contraction, with no associated movement), following FES therapy demonstrated some degree of improved voluntary activation of finger movements (at worst full ROM without gravity). The improvement in voluntary activation may be indicative that there are not only the peripheral muscular changes but also that there changes to the central nervous system. These findings are very much in line with our previous studies that examined FES therapy in sub-acute SCI patients and sub-acute stroke patients [17,30,32].

Additional Hand Movement Assessments

Both Participant 1 and Participant 2 showed improvements in integrated hand function, as measured by the mSHFT, following FES therapy. These tasks required the individual to flex their fingers with their wrist in a neutral or flexed position. FES therapy enabled both individual to perform new and some old tasks with improved dexterity, force and speed, i.e., improved overall performance.

Despite the obvious task performance improvement in the RGTR in the treated limb following FES therapy, there was no overall treatment effect that was seen in FSR variability. There was a significant difference between which hand was treated in the quadriplegic group in terms of FSR variability on the first sensor only. The accepted definition of force variability is the standard deviation of steady-state force (measurement sensitivity). Which one of the three possible explanations is the appropriate one cannot determine at this point in time because of the way the study was carried out.

Summary of Both Participants’ Results: Bold indicates results that were similar across both participants.

<table>
<thead>
<tr>
<th>SCI Injury</th>
<th>Participant 1</th>
<th>Participant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6 Sensory Incomplete</td>
<td>C4-5 Motor Incomplete</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of Injury</th>
<th>9 years</th>
<th>8 years</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FES Goals</th>
<th>Strengthen wrist flexors, extendors, and digit III – V flexors</th>
<th>Strengthen wrist extendors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWM</td>
<td>No substantial change</td>
<td>No substantial change</td>
</tr>
<tr>
<td>MMT Totals (1/180)</td>
<td>Treated increase of 40 points</td>
<td>Treated increase of 12 points</td>
</tr>
<tr>
<td>Wrist Muscles</td>
<td>No substantial change</td>
<td>No substantial change</td>
</tr>
<tr>
<td>Thumb Muscles</td>
<td>No substantial change</td>
<td>No substantial change</td>
</tr>
<tr>
<td>Finger Muscles</td>
<td>11/18 muscles with substantial increase (flexors and extensors) in treated hand.</td>
<td>4/18 muscles with substantial increase (flexors) in treated hand.</td>
</tr>
<tr>
<td>mSHFT</td>
<td>Substantial increase in score of tasks requiring finger flexor strength in treated hand</td>
<td>Substantial increase in score of tasks requiring finger flexor strength in treated hand</td>
</tr>
</tbody>
</table>

Overall Successful Object Contact Score

<table>
<thead>
<tr>
<th>Target A Success</th>
<th>Treated hand increased by 21</th>
<th>Treated hand did not change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated hand increased by 5</td>
<td>Untreated hand decreased by 6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target B Success</th>
<th>Treated hand increased by 11</th>
<th>Treated hand increased by 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated hand decreases by 4</td>
<td>Untreated hand increased by 5</td>
<td></td>
</tr>
</tbody>
</table>

C. Fingers’ Strength

Both participants demonstrated increased strength of the muscles controlling the action of the fingers. Participant 1’s program was designed to strengthen existing movement in digit III-V flexors and to acquire movement in his digit II-V extensors and digit II flexors which was achieved with moderate success. Interestingly Participant 1’s opponents digiti minimi, which was not a targeted muscle, demonstrated a similar increase in the MMT scored. This MMT score may result from the increased digit V flexor strength. Participant 2’s program was designed to promote movement in the digit II-V flexors and extensors, which was achieved with modest success. At this point in time one can not speculate what was the main reason for the observed changes. Examination of the neurological change in the central nervous systems (both cortical, sub-cortical and spinal cord levels) and/or muscle tissue changes should be able to provide insight into the observed changes.
significance with respect to functional restoration. However, the quantitative analysis of the RGTR task and the results for object contact show promise as a new strategy to measure improvement in addition to reflect motor learning.

However, our study demonstrates that using FES in an integrated therapeutic approach affected restoration and improvement of hand function in individuals with chronic SCI. That by itself suggests that these patients, contrary to established belief in the rehabilitation field, still pose a potential for improvement many years post SCI. Also, these findings suggest that the FES therapy holds a promises with respect to restoring hand function in individuals with chronic SCI and that longitudinal studies that will examine the use of the FES therapy for restoration of upper limb function are required.

Donaldson et al. [11], McDonald et al. [10], Popovic D et al.[15], Popovic MR. et al.[14], and Snoek et al. [16] all reported that following the application of a neuroprosthetic there was reported improvement of motor abilities. In some cases the neuroprosthesis was discarded as the movements it supplemented or augmented became possible without the device. More recently, Popovic MR et al [17], have shown that FES therapy has the potential to be used as an effective treatment strategy in restoring grasp function in individuals with acute cervical SCI and they reported that individuals with both complete and incomplete SCI, who received FES in addition to their regular therapy, had significant improvements in the tasks that they could perform with their upper extremity [17]. This is further supported by the recent systematic review by Kloosterman et al who also conclude that new standards for training and motor-learning need to be established [28].

V. CONCLUSIONS
This study demonstrated that the FES therapy has a potential as a therapeutic intervention to improve hand function in chronic, cervical SCI. The intervention strategy for this population must be customized, purposeful, progressive, goal orientated, and meaningful for the participant. The findings also suggest that the FES therapy causing positive change but that the measurement tools used to date to capture these changes are not sensitive enough to elucidate the underlying mechanisms that cause the observed changes. Further refinement of the measurement strategies is warranted if the efficacy of the FES therapy is to be determined. Establishment of protocols that incorporate specificity of approach and multiple outcome measures is important in order to translate the FES therapy into practice.

REFERENCES

