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Abstract—The purpose of this study was to demonstrate the use 

of the self-organizing maps (SOM) method for visualization, 
modelling and comparison of trunk neuromuscular synergies 
during perturbed sitting. Thirteen participants were perturbed at 
the level of the sternum, in eight directions during sitting. 
Electromyographic (EMG) responses of ten trunk muscles 
involved in postural control were recorded. The SOM was used to 
encode the EMG responses on a two-dimensional (2-D) projection 
(i.e., visualization). The result contains similar patterns mapped 
close together on the plot therefore forming clusters of data. Such 
visualization of ten EMG responses, following eight directional 
perturbations, allows for comparisons of direction-dependent 
postural synergies. Direction-dependent neuromuscular response 
models for each muscle were then constructed from the SOM 
visualization. The results demonstrated that the SOM was able to 
encode neuromuscular responses, and the SOM visualization 
showed direction-dependent differences in the postural synergies. 
Moreover, each muscle was modelled using the SOM-based 
method, and derived models showed that all muscles, except for 
one, produced a Gaussian fit for direction-dependent responses. 
Overall, SOM analysis offers a reverse engineering method for 
exploration and comparison of complex neuromuscular systems, 
which can describe postural synergies at a glance. 
 

Index Terms—Balance, electromyography, muscle synergy, 
perturbation, self-organizing map, sitting, visualization. 
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I. INTRODUCTION 
RUNK stability is responsible for maintaining upright 
posture of the spine during standing and sitting. Trunk 

stability relies on complex synergistic muscle activations, 
which play an important role during standing and sitting 
balance control. Previous analysis of trunk stability have 
examined over 40 muscles of the ‘spine system’ [1], which are 
difficult to evaluate and interpret as a collective system using 
standard analysis methods. Consequently, there is a need to 
develop a technique which would allow one to quickly and 
intuitively analyze synergistic activity of many muscles that act 
in concert and to derive principles of their synergistic activity 
from the individual electromyography (EMG) recordings of 
the muscles of interest during a particular neuromuscular 
activity [2]. 

In postural control, gross movements that require a number 
of interdependent and simultaneous muscle responses are 
known as postural synergies. Postural synergies are control 
signals for groups of muscles that work together to assure 
stability of a certain joint or a body segment [3]. It is known 
that tonic muscle activation contributes to stability of the trunk 
during sitting balance [4]. It is established that tonic activation 
of the trunk muscles contributes to the stability of the trunk 
during sitting and standing balance [4]. It has also been 
established that phasic, feedback-driven, trunk muscle 
responses help maintain trunk stability during perturbed sitting 
[4], [5]. In this study, we analyzed postural synergy and the 
perturbation-induced phasic response of the trunk muscles that 
work collaboratively to ensure stability of the trunk during 
perturbed sitting. 

The concept of synergy is related to the understanding of 
how the central nervous system (CNS) activates multiple 
muscles in order to perform complex movements [3]. Muscle 
synergies are analyzed by examining correlations between 
pairs of muscles [6]. However, correlation analysis is not 
sufficient when investigating tasks that involve more complex 
synergies [3]. Statistical methods using matrix factorization, 
such as principal component analysis [7], gradient descent [8], 
and cluster analysis [9], offer a solution for investigating more 
complex mechanisms by analyzing average performances over 
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numerous repeated trials. Uncontrolled manifold (UCM) 
analysis method [10] evaluates the variability between trials in 
order to analyze synergies qualitatively. Though all these 
methods rely on extensive data analysis, which can often be 
difficult to interpret and conceptualize, they account for the 
complexities inherent in postural control, and can thus 
contribute to the understanding of how the CNS controls 
multiple muscles during complex movements. 

Our study presents a self-organizing maps (SOM) method 
for representing, comparing and modelling complex postural 
synergies at a glance. The SOM is an artificial neural network 
(ANN) that uses an unsupervised learning algorithm to project 
large input datasets onto a two-dimensional (2-D) 
representation known as a map [11]. The SOM produces an 
organized map in which similar patterns, discovered in the 
input data, are mapped onto nodes close to one another on the 
map. Thus the map becomes a projection of the input data and 
allows visualization of large datasets on a 2-D display, while 
maintaining their topological order [11]. Consequently, 
visualization of numerous EMG responses following 
perturbations results in a method for representing and 
comparing postural synergies at a glance. 

The SOM algorithm has been used as a robust method for 
classification of neuromuscular disorders based on EMG 
recordings [12] and for exploration of gait coordination based 
on locomotion kinematic data [13], [14] (see [15] for a review 
of other applications of SOM in biomechanics). To date, there 
have been limited applications of SOM for visualization of 
neuromuscular synergies in posturography. Moreover, postural 
muscle synergies represent a general construct used by the 
CNS [16] and may reveal insight into neural strategies used by 
healthy and impaired nervous systems [17]. The SOM presents 
topological relationships of high-dimensional, non-linear data 
visually, thus making it an attractive tool for analyzing 
postural muscle synergies. 

The objective of this study is to use the SOM method to 
represent and compare postural muscle synergies by producing 
a visualization of complex neuromuscular responses following 
perturbations. Furthermore, the objective is to produce 
response models of each muscle and compare the results 
obtained with the SOM analysis to the results obtained by 
Masani et al. [4] using curve fitting. Overall, the aim of this 
study was to demonstrate the use of SOM for visualization and 
comparison of neuromuscular synergies in posturography. The 
SOM analysis was expected to contribute to further 
understanding and aid the reverse engineering of the neural 
mechanisms responsible for sitting balance control, which 
relies on complex neuromuscular relationships [1]. 

II. METHODS 

The full experimental protocol is reported in our previous 
study [4], [5]. A brief description follows. 

A. Subjects 
This study included thirteen healthy male adults (ages: 21–

39 years; mean height: 178.0 (SD: 4.7) cm; mean body mass: 
70.3 (SD: 10.0) kg; and all except one were right-handed). 
Participants had no reported history of lower back problems. 
The experimental protocol was approved by the local ethics 
committee and all subjects gave written informed consent 
before participating. 

B. Experimental Protocol 
Subjects were seated in an upright position with legs 

unsupported, arms crossed over the chest, and eyes closed; 
subjects wore headphones to eliminate auditory cues. The 
experiment consisted of eight directional perturbations at the 
level of sternum, uniformly spaced at intervals of 45o around 
the subject. Perturbations were applied via manual pulling 
using a chest harness. The applied perturbation forces were in 
the range from 131 to 148 N [4]. Five trials were taken for 
each of eight directions (total of 40 perturbations) for each 
subject. The perturbations were randomly ordered to prevent 
any anticipation, with approximately 30s between 
perturbations. 

C. Data Acquisition 
Surface EMG recordings were taken from ten muscle groups 

(five muscles recorded bilaterally) that were identified as 
relevant for posture and trunk stability. Ten disposable EMG 
electrodes (silver-silver chloride disposable electrodes, 10mm 
diameter) were placed bilaterally, 18mm apart, over the 
following muscles:  1) rectus abdominis (RA), 3cm lateral to 
the umbilicus; 2) external oblique (EO), 15cm lateral to the 
umbilicus; 3) internal oblique (IO), midpoint between the 
anterior superior iliac spine and the symphysis pubis; 4) 
thoracic erector spinae (T9), 5cm lateral to the T9 spinous 
process; and 5) lumbar erector spinae (L3), 3cm lateral to the 
L3 spinous process. A reference electrode was placed over the 
clavicle. 

Data were acquired using two AMT-8 EMG recording 
systems (Bortec Biomedical Ltd., Canada) with a pre-
amplification gain of 2,000 and a frequency response of 10-
1,000Hz. All data were sampled at 2,000 Hz using a 12-bit 
data acquisition system (NI6071E, National Instruments, 
USA). All recordings were rectified and low-pass filtered at 
2.5Hz using a 4th order, zero-phase-lag Butterworth filter to 
compute the linear envelope of EMG signals [4], [18]. The 
phasic response was determined as the peak EMG value in the 
0.5s time window immediately following the perturbation [4]. 
Phasic responses of each muscle were selected as the features 
for analyzing postural synergies following perturbations. 

 
 

Fig. 1.  Self-organizing map method for data mining, visualization and 
model extraction of muscle synergies. 
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D. Self-Organizing Map (SOM) 
A SOM was used to represent and compare postural muscle 

synergies, and to model the responses of each muscle. The 
SOM analysis method represented in Figure 1 was 
implemented in Matlab 7 (MathWorks Inc., USA) using the 
SOM Toolbox for Matlab [19]. Acquired EMG signals were 
processed and the phasic muscle response feature was selected 
(see: Data Acquisition). The SOM algorithm had two phases: 
training phase and recall phase (visualization), which are 
shown in Figure 2. 

The input dataset consisting of trunk muscle phasic 
responses was encoded onto a 2-D map representation during 
SOM training. In the recall phase the resultant map allowed 
visualization of postural synergies for each of eight directional 
perturbations. Each direction was assigned a cluster on the 
map corresponding to where the responses of that direction 
converged. The organized map contained similar responses 
grouped close together. Comparison of the EMG response 
differences was done by analyzing the relative proximity of the 
clusters of each perturbation direction on the map. Clusters of 
perturbation directions that were close together had similar 
neuromuscular responses and clusters of perturbation 
directions that were far apart had dissimilar responses. Lastly, 
from the clusters associated with each direction, an averaged 
response for each muscle was extracted. A direction-dependent 
model of the responses for each muscle was then constructed 
using Gaussian curve-fitting, and compared to the results 
obtained using conventional EMG analysis. A detailed 
description follows. 

SOM Training 
During SOM training the input data is encoded onto a 2-D 

output layer known as the map. SOM uses an unsupervised 
learning algorithm where the output layer nodes compete to 
encode the input data. 

The input dataset contains a vector for each of eight 
perturbation directions for each participant (five trials were 
averaged for each participant) resulting in 104 input data 
vectors (13 participants x 8 directions). Each input vector 
contains ten points corresponding to the phasic responses of 
each analyzed muscle. The input vectors also contained a label 
with the corresponding direction of perturbation to allow 
comparisons of direction-dependent responses. The label was 
used only during the recall phase to shows where the clusters 
for each direction converged on the resultant map, and was not 
used during the training phase. The input data was 
logarithmically normalized before SOM training. Training was 
performed in batch mode, which provided quicker execution of 
the algorithm [11]. 

The output layer was defined as a 5x5 hexagonal map. In 
the output layer each node (indexed by j = 1,…, 25) is 
represented by a weight vector wj = [wj1, wj2,…, wj10]T with 
the same dimensionality as the vectors from the input space 
(i.e., ten points). Weight vectors were initially randomly 
assigned and during the training they were tuned to represent 
the input data. 

During training, each iteration (indexed by n) proceeded by 
sampling a new input vector xn = [xn1, xn2,…, xn10]T from the 
input data, that was matched against nodes in the output layer 
by calculating the Euclidian distance between a given input 
vector and each node on the map.  The algorithm then selected 
the node that was the best matching unit (BMU), indexed by c. 
The BMU was the node whose weight representation (wc) was 
closest to the given input vector as measured by the Euclidean 
distance (Equation 1). 

||)(||minarg jnj wxc −=        (1) 

The weight vector of the BMU node was then adapted toward 
the current input vector (Equation 2). 

)]([)()()1( nwxnhnwnw jncjjj −⋅+=+     (2) 

Neighbouring nodes were proportionally modified via the 
neighbourhood function attempting to distribute knowledge 
locally around the BMU. A Gaussian neighbourhood function, 
hcj(n), which was centred on the BMU node, controlled the 
region in the output layer over which training occurred; rc and 
r j are the position of the BMU node and an arbitrary node, j, 
on the map (Equation 3). 
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The radius of the neighbourhood (σn), as well as the learning 
rate (αn), shrank monotonically as n increased. The algorithm 

 
 

Fig. 2.  Self-organizing map algorithm flowchart: a) Training and b) Recall 
phase. BMU is the best matching unit in a Euclidian sense (Equation 1). 
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sampled the input data randomly until the weight vectors 
converged to a stable projection of the input data [11], [19]. 
After SOM training, the map was encoded with the 
representation of the input data. 
 
SOM Visualization 

Visualization produced using the SOM–based method 
reduced dimensionality, yet maintained non-linear topological 
relationships [11]. Visualization was generated by 
superimposing a histogram of BMU hits for a particular 
dataset onto the nodes of the map, indicating BMU locations. 
The resultant map contained groupings of similar patterns that 
were discovered in the input data mapped onto spatially 
proximal nodes, consequently forming clusters of input data. 
Visualization of the hits histograms was produced for each 
perturbation direction (shown in Figure 3). Such a method of 
data representation enabled us to compare complex 
neuromuscular responses caused by different perturbations 
(i.e., direction-specific postural synergies). 

Visualization of all perturbation directions on a single map 
allowed rapid visual inspection of response differences. The 
arrows (shown in Figure 4a) represent the label indicating 
direction of perturbation with the highest BMU hits frequency 
(solid line), and other BMU hits (dotted line), appearing on 
each node. Clusters of responses for each direction were 
obtained by assigning each node a “winning” direction based 
on the highest frequency of BMU hits in that direction (Figure 
4). Relative proximity of clusters on the map implies similarity 
or dissimilarity of the overall weight vectors associated with 
those clusters. 

The Euclidian distance measure was calculated from the 
centre of each cluster to the centre of all other clusters on the 
map (Equation 4). The Euclidian distance between arbitrary 
clusters a(xa, ya) and b(xb, yb) is: 

22 )()( bababa yyxxd −+−=−      (4) 

The average Euclidian distance shows the proximity between 
clusters, which infers similarity or dissimilarity of direction-
dependent postural synergies. 
 
Model Extraction 

Models of neuromuscular responses were constructed from 
weight vector representations of the convergent clusters on the 
map.  Each cluster contained several nodes and weight vector 
responses that corresponded to each perturbation direction. 
Average responses for each cluster were calculated to produce 
one overall response vector for each perturbation direction. 
The resulting weight vector for each direction (wd, for d=1-8), 
contained ten points representing the average phasic 
neuromuscular response of each muscle group. Gaussian 
curve-fitting was used to build a continuous-direction model 
for each muscle. Each muscle response was analyzed with 
respect to the perturbation direction to extract direction-
dependent models: the relationship between perturbation angle 
(x) and the EMG response (y), for each muscle, was described 

by a Gaussian function (Equation 5), where a, b, and c are the 
model coefficients: 
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III. RESULTS 

A. Postural Synergy Visualization 
Postural synergy representations for each direction were 

obtained and projected onto the SOM to produce visualization. 
Visualization based on BMU hits distribution shows the 
concentration of clusters for each perturbation direction 
(Figure 3). The relative concentration of clusters on the map 
infers similarities (i.e., clusters closer together) and 
dissimilarities (i.e., clusters further apart) between direction-
dependent postural responses. The same visualization also 
shows that perturbations to the front and back, as well as the 
right and left (directions 1 and 5, and 3 and 7, respectively), 
have symmetrical cluster locations relative to each other 
(Figure 3). Although the absolute position of the clusters on 
the grid was arbitrary, cluster symmetry indicates that 
neuromuscular responses were dissimilar and opposite for 
opposing perturbation directions, and that the muscular 
reactions for front vs. back and right vs. left directions 
represented the most dissimilar and opposite postural 
synergies. 

Visualizing the directions for which each node was active 
on a single SOM map using direction-indicating arrows 
allowed a comparison of postural synergies between 
perturbation directions (Figure 4). It is possible for more than 
one direction to appear in the same node (represented as 
multiple arrow directions on a single node - Figure 4a), 

 
 
Fig. 3.  SOM map visualization of postural synergy response for each 
perturbation direction. The plots show average responses for all subjects for 
each direction. The analysis represents postural synergies and compares the 
direction-dependent differences of perturbations by comparing the relative 
cluster locations. 
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indicating similarity of muscle responses for those directions. 
Each node could also be assigned to a particular cluster 
(grouped based on the “winning” direction of individual nodes 
- Figure 4b) and projected on a single SOM map illustrating 
each of the eight perturbation directions clusters. Adjacent 
perturbation intervals are represented by clusters that were 
closest on the map (i.e., perturbation direction 5 appears 
between directions 4 and 6 - Figure 4b), indicating the most 
similar responses between these directions. In addition to 
similar input data converging to proximal clusters on the map, 
the size of the clusters is proportional to the size of data 
corresponding to those clusters [20]. Analysis of SOM cluster 
size (variability) was found to be valid for variability analysis 
[13]. Our analyses of the SOM map (Figure 3) and the relative 
cluster size (Figure 4) indicate that if the cluster size is 
smaller, there is less data associated with that cluster (i.e., 
perturbation direction) [20] hence suggesting smaller 
variability of neuromuscular responses associated with that 
perturbation direction. The results suggest that neuromuscular 
responses to directions 1 and 5 (i.e., anterior-posterior 
directions) are less variable (average cluster size = 2) than 
other perturbations directions (average cluster size = 3.5). 

The Euclidian distance measured between the central 
locations of two clusters on the map represents similarity (i.e., 
small Euclidian distance) or dissimilarity (i.e., large Euclidian 
distance) of synergistic postural responses associated with 
those two clusters. Each perturbation direction is presented on 
the polar plot (Figure 5) showing similarities and 
dissimilarities of that perturbation to all other perturbation 
directions. As expected, the synergistic responses of each 
direction were most similar to the responses of those directions 
adjacent to it and got progressively more dissimilar as 
perturbations change. The responses were most dissimilar from 
the perturbations in the opposite direction to it. This analysis 
compared synergistic difference between direction-dependent 
postural responses using the SOM method. 

 

B. Direction-dependent Models 
Gaussian regression models (Equation 5), for each muscle, 

were computed by extracting and analyzing the average 
response vector (wd), for each direction (d=1-8). Each 
direction vector contained 10 points representing the average 
phasic neuromuscular responses of each corresponding 
muscle. The direction-dependent model for each muscle was 
computed to compare the results to previous studies, which 
used different approaches to analyze direction-dependent 
neuromuscular responses during sitting. The coefficient of 
determination (R2) was used to assess the goodness of fit of 
each muscle model to be represented by the Gaussian function 
and the results obtained using the SOM method are presented 
in Table 1. The R2 values from Masani et al. [4] are used for 
evaluation of the results obtained by SOM. 

In Figure 6 the perturbation directions were converted from 
directions 1-8 into angles, where: 1=0o/360o, 2=45o, 3=90o, 
4=135o, 5=180o, 6=225o, 7=270o, and 8=315o. The responses 
were sub-divided anatomically to abdominal and back muscle 
groups. The abdominal muscles (RA, EO and IO) responses 
yielded a good fit suggesting that the relationship could be 
represented using a Gaussian function. The back muscles (T9 

 
 
Fig. 4. SOM map visualization of mean cluster responses for all perturbation 
directions. a) Directions of arrows on each node indicate perturbation 
directions 1-8; solid arrows represent the “winning” direction with the 
highest responses; dotted arrows represent all other directions with lesser 
responses on each node. b) Each cluster is colour-coded and labeled with the 
associated direction number and the corresponding direction-indicating 
arrow. 

 
Fig. 5.  Polar plots showing the Euclidian distances between clusters on the map. Distances between clusters imply neuromuscular differences between the 
corresponding clusters. Clusters of each perturbation direction are compared to all other perturbations to show the similarities and dissimilarities of direction 
dependent neuromuscular responses. 
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and L3) responses provided an acceptable fit using normal 
distribution, suggesting a tendency that the relationship fits a 
Gaussian function, with the exception of right L3. The models 
obtained using the SOM method suggests that the amplitude of 
phasic response to direction of perturbation relationship during 
sitting may be quantitatively modelled using the Gaussian 
function. This finding confirms those of Masani et al. [4] and 
Preuss and Fung [21], who used standard analysis methods to 
quantify the relationship. 

Coefficient ‘b’ in Table 1 indicates where each muscle 
model had a maximal response. The abdominal muscles had 
maximal responses around 180o (back perturbation direction) 
suggesting that opposing muscles stabilized the perturbations. 

The maximal responses of back muscles were around 0o (front 
perturbation direction), suggesting the opposing muscles also 
stabilized the perturbation. The anatomy of the back muscles, 
both of which are located around the spinal column, is 
consistent with the location of the peak responses. 

IV. DISCUSSIONS 
The purpose of this study was to present and demonstrate an 

SOM-based method for representing, comparing and 
modelling of trunk muscle postural synergies following 
direction-dependent perturbations during sitting. We used the 
SOM to project and represent the direction-dependent phasic 
responses of ten muscles on a 2-D map. Furthermore, the SOM 
method produced an organized visualization, where similar 
patterns were mapped close together, therefore allowing 
comparisons of the neuromuscular responses following eight-
directional perturbations. Finally, we produced direction-
dependent models for each of the ten muscles that were 
acquired using the SOM method. 

A. Direction-dependent Neuromuscular Responses 
 The results obtained by visualizations produced using 

SOM-based analysis provide important insights and allow 
quick comparisons of the neuromuscular system relevant to 
studies of complex mechanisms of sitting balance [1]. Using 
the SOM visualization cluster position analysis (Figure 5) we 
have quantified direction-dependent differences of trunk 
muscle phasic responses during sitting, which are necessary to 
stabilize the trunk [4]. Our study found symmetrical and 
direction-dependent neuromuscular responses which are 
consistent with findings from the literature [4], [5]. In our 
study activation patterns for each muscle obtained from the 
SOM clusters were modelled using the Gaussian distribution 
(Figure 6 and Table 1) and demonstrate maximum EMG 
response in the anatomically opposite direction to the 
perturbation. The results indicate that opposing muscular 
reactions stabilize the body by stiffening the muscles that 
would provide the forces in the opposite direction to the 
perturbation. These results complement previous findings 
demonstrating the role of direction-dependent abdominal 
muscle responses that can be modelled using Gaussian 
distribution [4], [21]. Although our R2 coefficients are not as 
high, the difference could also be attributed to the maximal 
voluntary contraction normalization by Masani et al. [4]. 
Moreover, the anatomy of back muscles (T9 and L3) extends 
vertically along the sagittal plane of the spine, whereas the 
abdominal muscles (RA, EO and IO) extend along the sagittal 
and transverse planes of the trunk. This musculoskeletal 
geometry could explain why the back muscles exhibit less 
direction-dependent responses (i.e., have a more active role in 
stabilizing all perturbation directions), whereas abdominal 
muscles have more direction-dependency. These results are 
consistent with the notion that the CNS may be tuning the 
activation level based on the musculoskeletal geometry [22]. 

Furthermore, analysis of variability based on the size of 
SOM clusters [20] (Figures 3 and 4) and direction-indicating 

TABLE I 
RESULTS OF GAUSSIAN CURVE-FITTING FOR EACH MUSCLE 

 
 

Muscles are recorded bilaterally: left (L) and right (R); a, b, c are the 
coefficients of Equation 5; and R2 is the coefficient of determination which 
is compared to R2 obtained by Masani et al. [4]. 

 
 
Fig. 6. Activation pattern for different directions of perturbation for left 
(thick line) and right (thin line) muscle group for all subjects. Abdominal 
muscles: rectus abdominis (RA), external oblique (EO), and internal oblique 
(IO); Back muscles: thoracic erector spinae (T9), lumbar erector spinae (L3). 
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arrows (Figure 4a) offer some insights into the variability of 
neuromuscular responses during sitting. Our results suggest 
that the responses to anterior-posterior perturbations (i.e., 
forward and backward perturbations) are less variable than 
other perturbation responses, which include the medio-lateral 
component. Variability of postural synergies is a result of 
neuromuscular redundancy [16] (i.e., the same movement can 
be executed by a variety of muscular patterns [1]) and does not 
necessarily reflect dysfunction [17]. Inter-trial variations of 
individual muscles are known to be correlated, thus 
representing a general construct used by the CNS, and this 
variability may represent variations of neural commands that 
activate individual muscle synergies [16]. The smaller 
variability of neuromuscular responses in the anterior-posterior 
directions could be explained by the anatomy of the trunk 
muscles [23], which provides a greater mechanical advantage 
to resist perturbations in the anterior-posterior direction. 

B. Muscle Synergy Visualization with SOM 
The main advantage of SOM is the ability to represent the 

results pictorially [12]. An intuitive topological visualization 
of muscle synergies could aid clinicians in discriminating 
pathology, assessment of rehabilitation and creating evidence-
based interventions [17], by comparing responses of 
individuals (for example with spinal cord injury) to established 
norms. Visualization of direction-dependent responses could 
also be used to assess symmetry of muscular responses of 
patients (with stroke, for example) or for biofeedback training. 
Furthermore, the capability of the SOM algorithm to encode 
redundancies in data [13], [20] and relative ease of 
interpretation [11]-[14], which have been cited as a limiting 
factor for clinical muscle synergy analysis [17], is another 
benefit of SOM over other muscle synergy extraction methods 
[6]-[10]. Foremost, the unsupervised, self-organizing structure 
of the SOM is an important feature of the SOM algorithm [20]. 
SOM generates classes of data automatically, consequently 
allowing discovery of subcategories of data, and making it 
suitable for exploratory analysis [11], [12], [14] or discovery 
of new patterns, perhaps justifying poorer goodness of fit 
obtained for the back muscles, and suggest that these muscles 
exhibit more uniform direction-dependent responses and 
should be modelled accordingly. 

V. CONCLUSIONS 
This study demonstrated the SOM-based analysis of 

postural synergies of trunk muscles during direction-dependent 
perturbed sitting. Complex neuromuscular synergies were 
visualized and compared by encoding large EMG datasets on a 
single map and quantitative models of each muscle were 
produced. The results obtained using SOM analysis are 
consistent with findings obtained by Masani et al. [4] and other 
studies [5], [21] therefore adding to the validity of the SOM 
visualization of postural synergies. Although computational 
methods and SOM analysis have not yet demonstrated their 
full potential [20], the presented method was capable of 
encoding, qualitatively comparing and assessing variability of 

direction-dependent postural muscle synergies during sitting 
perturbations. The SOM-based analysis has revealed insights 
into mechanisms of trunk muscles during sitting perturbations, 
and can be used as a reverse engineering method for 
visualization of complex neuromuscular systems at a glance. 
The benefit of SOM-based analysis is the visualization, which 
has produced a way for summarizing and comparing postural 
synergies, despite of their complexity. Future applications will 
concentrate on encoding larger input sets with temporal 
information, including a larger selection of muscles, as well as 
a range of perturbation magnitudes. Comparisons to patient 
data and individual responses could provide a postural synergy 
classification method which can be clinically significant for 
trunk assessment and rehabilitation. 
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