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ABSTRACT 

We have recently demonstrated in simulations and experiments that a proportional and 

derivative (PD) feedback controller can regulate the active ankle torque during quiet stance and 

stabilize the body despite a long sensory-motor time delay. The purpose of the present study was 

to: 1) model the active and passive ankle torque mechanisms and identify their contributions to 

the total ankle torque during standing; and 2) investigate whether a neural-mechanical control 

scheme that implements the PD controller as the neural controller can successfully generate the 

total ankle torque as observed in healthy individuals during quiet stance. Fourteen young subjects 

were asked to stand still on a force platform to acquire data for model optimization and 

validation. During two trials of 30 s each, the fluctuation of the body angle, the electromyogram 

of the right soleus muscle, and the ankle torque were recorded. Using these data, the parameters 

of: 1) the active and passive torque mechanisms (Model I); and 2) the PD controller within the 

neural-mechanical control scheme (Model II) were optimized to achieve potential matching 

between the measured and predicted ankle torque. The performance of the two models was 

finally validated with a new set of data. Our results indicate that not only the passive, but also the 

active ankle torque mechanism contributes significantly to the total ankle torque and, hence, to 

body stabilization during quiet stance. In addition, we conclude that the proposed neural-

mechanical control scheme successfully mimics the physiological control strategy during quiet 

stance and that a PD controller is a legitimate model for the strategy that the central nervous 

system applies to regulate the active ankle torque in spite of a long sensory-motor time delay. 

 

INDEX TERMS – Ankle torque, functional electrical stimulation, proportional and derivative 

(PD) feedback control, quiet standing, sensory-motor time delay. 
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I. INTRODUCTION 

The lost ability of individuals with spinal cord injury (SCI) to stand can be regained by 

artificially stimulating the skeletal muscles in the lower limbs [1]. Recently, arm-free standing of 

individuals with SCI using functional electrical stimulation (FES) has drawn much attention in 

the field as it might allow individuals with SCI to stand and use both arms to perform activities 

of daily living (ADL) [2], [3]. However, current FES systems do not open up this possibility yet. 

Instead, they require that the person actively regulates balance using at least one arm, thus, 

limiting the use of the FES systems during ADL [4], [5]. 

The lack of knowledge of an effective closed-loop control strategy to regulate FES 

induced muscle contractions might also be due to an insufficient understanding of the control 

strategy that healthy individuals apply during quiet stance. Since the dynamics of quiet standing 

can be approximated by an inverted pendulum [6], the primary purpose of the control system 

during quiet stance is to provide the ankle torque needed to resist the gravity effect of the body 

and to ensure that its center of mass (COM) remains close to the equilibrium position. We do 

know that the ankle joint torque needed to stabilize the body can be evoked passively and 

actively. The passive torque component results from intrinsic mechanical properties of the joints, 

muscles, and ligaments (stiffness and damping), whereas the active torque component is 

generated via ankle muscle contractions that are regulated by the central nervous system (CNS). 

While passive torque alone cannot prevent the body from falling forward [7]-[9], it is still 

unclear how the CNS controls the ankle muscles to generate a timely active torque fluctuation 

despite a long sensory-motor time delay in the neural control mechanism. Note that the sensory-

motor time delay, which should not only include the commonly considered transmission time 

delays [10]-[13], but also a delay due to the actual torque generation process [14], threatens the 
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stability of the system. 

On the one hand, a feed-forward control mechanism has been hypothesized to 

successfully compensate for the sensory-motor time delay and regulate the active ankle torque 

during quiet standing [12], [13], [15]-[20]. On the other hand, also a linear feedback controller 

has been considered to represent the postural control mechanism during upright stance [21], [22]. 

In this context, our team showed that a feedback system regulated by a proportional and 

derivative (PD) controller can represent the neural control scheme that the CNS applies to 

generate the active torque and promote ankle joint stabilization despite the sensory-motor time 

delay [14], [23], [24]. In addition, we verified in experiments with a subject with a rare 

neurological disorder that the implemented PD controller can, in fact, improve balance during 

standing and facilitate quiet standing dynamics observed in healthy individuals [25]. 

To further validate our previous results and at the same time provide a more 

comprehensive model of the control system during quiet stance, the purpose of the present study 

was to: 1) model the active and passive ankle torque mechanisms and identify their contributions 

to the total ankle torque during standing; and 2) investigate whether a neural-mechanical control 

scheme that implements the PD controller as the neural controller can successfully generate the 

total ankle torque as observed in healthy individuals during quiet stance. 
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II. METHODS 

A. Physiological Control Concept of Quiet Standing 

Fig. 1 depicts a model of the control concept of quiet stance. The passive torque depends 

on the rotational stiffness and damping of the ankle joints, muscles, and ligaments (mechanical 

controller), whereas the active torque is regulated by the CNS via sensory information on the 

body kinematics (neural controller) and generated by the contractile elements of the ankle 

muscles. Using this definition, the passive torque includes the torque due to the stiffness of the 

ankle joints and due to the stiffness of the active muscles. 

Note that the neural feedback loop is affected by the sensory-motor time delay and needs 

to be compensated for by the neural controller. The sensory-motor time delay consists of: 

 a constant feedback time delay that represents the time loss due to neural transmission 

from the ankle somatosensory system to the brain (τF); 

 a constant motor command time delay, which represents the time loss due to the sensory-

motor information process in the CNS and the neural transmission from the CNS to the 

plantar flexors (τM); and 

 an electromechanical delay between muscle activation and active torque generation that 

results from the neuro-musculo-skeletal dynamics of the ankle joint complex (τE). Note 

that τE is a varying quantity that depends on the frequency spectrum of the neural input 

and the dynamic properties of the muscles and joint [14], [26]. 

B. Model Identification 

Since the identification of the neuro-musculo-skeletal (NMS) dynamics from muscle 

activation to active torque generation as well as the gains of the mechanical controller should not 
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be affected by the proposed neural controller, these two components have to be studied 

independent of the neural control strategy. As such, in Section IIB1, the active and passive torque 

mechanisms will be identified, whereas in Section IIB2, the obtained results will be used to 

evaluate the ability of the previously proposed PD controller to represent the neural controller in 

the neural-mechanical control scheme of quiet standing. 

1) Active and Passive Torque Mechanisms (Model I) 

The model of the NMS dynamics and of the mechanical controller is shown in Fig. 2. 

Using muscle activity and body angle data from quiet standing experiments with able-bodied 

subjects, the model was expected to generate the active ankle torque as well as the mechanically 

controlled passive ankle torque during quiet standing. For each subject, the predicted torque 

fluctuation was then compared with respective experimental ankle torque data and optimized by 

tuning the parameters of the NMS dynamics (T and G in Fig. 2) and the stiffness component of 

the mechanical controller (K in Fig. 2). 

In order to identify the NMS dynamics, it has to be known that the plantar flexors are 

responsible for generating the active ankle torque as they show continuous activity during quiet 

standing; the dorsiflexors on the other hand are at most intermittently active [23]. Among the 

plantar flexors, the activity of the soleus muscle (SOL) during quiet stance is about five times as 

large as that of the gastrocnemius muscle with respect to their overall capacities [27]. 

Additionally, the cross-sectional area of SOL is twice as large as that of the gastrocnemius 

muscle (medial and lateral heads together) [28]. Hence, we assumed that SOL is the dominant 

contributor to the active ankle torque generation and used its electromyogram (EMGSOL) as the 

input to the NMS dynamics model. Note that the underlying assumption was indeed verified in 

one of our recent studies [14]. 
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As seen in the upper dashed box of Fig. 2, the dynamics from EMGSOL to the active ankle 

torque were modeled via a second-order low-pass system that has been used to capture the 

isometric activation-force relationship in cats [29], [30] and humans [30]-[34]. Especially the 

soleus muscle has been studied extensively via the second-order low-pass system, and this for 

more than three decades [29], [30], [33], [34]. Since the muscle length change is very small 

during quiet standing, i.e., less than 0.5 % of the full potential length change (0.6 mm in [16] 

compared to 140 mm in [35]), this model can also be used for the quiet standing task. In fact, we 

recently used a critically damped second-order model for the standing posture and demonstrated 

that the model can successfully approximate the ankle torque generation process during standing 

[14]. 

From a physiological perspective, the second-order dynamics represent the chemical 

dynamics for the variation of calcium concentration in the muscle fiber and the mechanical 

dynamics for the sliding filament action [36], [37]. The transfer function H(s) is written as: 

                                                   
12

)(
22 


TssT

G
sH ,           (1) 

where G is the gain and T the twitch contraction time of the second-order system [26]. Note that 

the twitch contraction time T is equivalent to the inverse of the system’s natural frequency 

(T=1/ωn). While T in (1) characterizes the NMS dynamics of SOL, G depends on the location of 

the electrodes and the impedance between the electrodes and the skin. Therefore, G has no 

deeper physiological meaning in the context of the present study. As indicated in Fig. 2, the 

output of the NMS dynamics model was doubled to consider the active torque contribution from 

both legs (based on the assumption of symmetry). 

The mechanical controller with gains for the rotational stiffness (K) and damping (B) 
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generated the total passive ankle torque based on the body angle fluctuation during quiet 

standing (lower dashed box in Fig. 2). While the stiffness gain K had to be identified, the 

damping gain was set to B = 5 Nms/rad (based on Loram and Lakie [8]) as both the contribution 

and variability of K have been shown to outrange B by a factor of about 100 [8]. Note that one 

advantage associated with keeping B constant is that the performed optimizations are 

computationally more efficient and the torque matching results more significant due to the lower 

number of variables. 

2) Neural-Mechanical Control Scheme (Model II) 

The model of the neural-mechanical control scheme of quiet standing is shown in Fig. 3. 

Using body angle data from the standing experiments, the feedback model was expected to 

generate the neurally controlled active ankle torque as well as the mechanically controlled 

passive ankle torque during quiet standing. For each subject, the predicted torque fluctuation was 

then compared with respective experimental ankle torque data and optimized by tuning the 

control gains of the neural controller (Kp and Kd in Fig. 3). 

The neural controller was modeled as a PD controller (upper left dashed box in Fig. 3), 

whereas the values for T and K were taken from Section B1 to adequately characterize the NMS 

dynamics (upper right dashed box in Fig. 3) and the stiffness component of the mechanical 

controller (lower dashed box in Fig. 3), respectively. Based on values reported in the literature, 

the feedback time delay and the motor command time delay were set to τF = 40 ms [38] and τM = 

40 ms [39], respectively. 

C. Experimental Data Acquisition and Processing 

In order to acquire the body angle, EMGSOL, and ankle torque data, we performed quiet 
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standing experiments with fourteen young subjects (age 31.9 ± 5.1 years; height 174.9 ± 8.8 cm; 

weight 69.0 ± 10.2 kg). None of the subjects had any known history of neurological disorders. 

Each subject gave written informed consent to the experimental procedure, which was approved 

by the local ethics committee in accordance with the declaration of Helsinki on the use of human 

subjects in experiments. 

Each subject was asked to maintain a quiet stance posture standing barefoot with eyes 

closed. Note that the eyes-closed condition was chosen over the eyes-open condition as it is in 

better agreement with the single-link inverted pendulum model of quiet standing [40]. To acquire 

sufficient data for model identification, two trials of 30 seconds were executed. During each trial, 

the subject was standing on a force platform (9281B, Kistler, Switzerland) that measured the 

fluctuation of the total ankle torque. Additionally, a laser displacement sensor (LK2500, 

Keyence, Japan) was placed behind the subject recording the anterior-posterior body sway 

fluctuation at the midpoint between the right ankle and knee joints. The activity of the right SOL 

(EMGSOL) was amplified by a factor of 10,000 and band-pass filtered between 20 and 450 Hz 

(Bangnoli 8 EMG System, Delsys, USA). 

All time series were logged at a sampling frequency of 1 kHz, an analog-to-digital (AD) 

resolution of 16 bit, and signal-specific, i.e., optimal voltage ranges (ML880 PowerLab 16/30, 

ADInstruments, USA). For optimal noise rejection, the AD converter was preceded by an analog 

anti-aliasing (low-pass) filter of fixed cut-off frequency (49 kHz) and followed by a digital finite-

impulse-response filter with a cut-off frequency set to the Nyquist value (500 Hz). While the 

torque and body sway fluctuation were then low-pass filtered using a fourth-order, zero phase-

lag Butterworth filter with a cut-off frequency of 2 Hz [26], EMGSOL was only rectified. Note 

that the rectified, unfiltered EMGSOL was used in the model of the active torque mechanism since 
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the NMS dynamics represent a transducer that convert neural input (surface-rectified EMG) to 

torque output [33]. Finally, the body sway recordings were converted into body angle data using 

the height of the laser above the ankle joint and the force plate measurements. 

D. Optimization and Validation Procedure 

The data from the first of the two standing trials of each subject were used for the 

identification of the NMS dynamics and the stiffness gain of the mechanical controller (Fig. 2). 

In order to investigate whether a good matching between the measured and predicted ankle 

torque was possible, the parameters T, G, and K (gray boxes in Fig. 2) were optimized by means 

of the DIRECT optimization technique [41] (Matlab ver. 7.5 and Simulink ver. 7.0, Mathworks 

Inc., USA). This technique requires no knowledge of the objective function gradient; instead, the 

algorithm samples points in the domain and uses the obtained information to decide where to 

search next. T, G, and K were tuned within ranges of 0-1000 ms, 0-500 Nm/V, and 0-150 % of 

the subject’s load stiffness, respectively. Note that the load stiffness of each subject, TLOAD, is 

defined as: 

                           COMbodyLOAD hgmT   ,             (2) 

where mbody is the mass of the body without the feet, g the acceleration due to gravity, and hCOM 

the height of the body’s COM above the ankle joint [26]. The optimization procedure was 

terminated once the ankle torque error remained constant for 100 consecutive iterations, 

suggesting the detection of the error’s global minimum. Following the optimization, the final 

values for T, G, and K were validated with a new set of experimental data from the second 

standing trial of each subject. For the optimizations and the evaluation of the optimized and 
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validated data, the goodness of fit between the measured and predicted ankle torque, %Fit [14], 

was determined by calculating the average of the percentage errors for all samples using: 

             





N

i i

ii

y

Yy

N
Fit

1

)
1

1(100% ,          (3) 

where N is the number of samples (30,000), y the measured and Y the predicted ankle torque. 

Each subject’s final values for T and K were then implemented in the model of the 

neural-mechanical control scheme of quiet stance (Fig. 3). It was used to optimize the gains Kp 

and Kd of the neural controller (gray boxes in Fig. 3) and validate the final values for all 

parameters (T, K, Kp, and Kd) with a new set of data. The optimization procedure tuned the 

gains Kp and Kd within the range of 0-150 % of the subject’s load stiffness (TLOAD) and was 

again terminated once the ankle torque error remained constant for 100 consecutive iterations. 

The experimental data from the first and second standing trials of each subject were used for the 

optimization and validation, respectively. Finally, the goodness of fit between the measured and 

predicted ankle torque was evaluated for both the optimized and validated data via (3). 

E. Methodological Verification 

1) Parameter Robustness 

To determine the robustness of the parameter identification for all subjects and both 

models, we studied the effect of 1) two different experimental data sets (body angle, EMGSOL, 

and ankle torque); 2) three different cut-off frequencies of the experimental low-pass filter (2, 10, 

and ‘∞’ Hz, i.e., no filtering at all); and 3) three physiologically feasible values for the damping 

gain B (0, 5, and 10 Nms/rad [8]). Potential differences in estimates within (main effects) and 

between (interactions) the factors ‘data set’, ‘cut-off frequency’, and ‘damping gain B’ were 

captured using a three-way ANOVA with repeated measures (α = 0.1). Moreover, to evaluate 
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parameter differences between subjects, we compared the intra- and inter-subject variance of the 

parameter estimates using the 18 robustness optimizations described above (2*3*3). 

2) Model Structure 

In order to confirm the validity of the model structure, we evaluated whether the 

identified parameters (T, K, Kp, and Kd) along with the pre-set parameters (B = 5 Nms/rad, τF, 

and τM) would result in a stable system for all subjects. For this purpose, we implemented each 

subject’s parameters in a previously proposed closed-loop feedback model of quiet stance 

regulating the subject’s inverted pendulum model (Fig. 2 in [14]) and carried out Nyquist 

stability analysis using the open-loop model.  

In addition to the stability analysis, we performed simulations with the closed-loop 

feedback model and external perturbations to show that our methodology is capable of reliably 

estimating the parameters of the model structure. Note that the applied (noise) perturbations were 

modeled as a low-pass filtered, uniform random number with zero mean and unity variance (see 

Section 2.3.1. and Fig. 1 in [24] for further details). Same as in our previous study [24], the 

perturbations were introduced as a continuous disturbance torque at the ankle joints, representing 

the summation of all internal noise. In a first step of this verification component, time series were 

generated for each subject (SOL motor command, body angle, and ankle torque) by means of the 

perturbed closed-loop feedback model and each subject’s identified parameters T, K, Kp, and 

Kd. In a second step, the time series were used in the two optimization models described in 

Section IIB to re-estimate the parameters of the closed-loop feedback model (identical 

optimization procedure and settings as in Section IID). 
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III. RESULTS 

A. Active and Passive Torque Mechanisms 

In Fig. 4, the experimental time series and the ankle torque predicted via the active and 

passive torque mechanisms (Fig. 2) are shown for one subject (validation). Figs. 4a and 4b depict 

the experimental body angle and EMGSOL data, respectively. In Fig. 4c, the bold gray line 

represents the fluctuation of the experimental and the thin black line the fluctuation of the 

predicted ankle torque. It can be seen that the predicted ankle torque fitted the measured ankle 

torque very well. Fig. 4c also shows the predicted passive and active torque components using 

dashed and dotted lines, respectively. 

The optimization and validation results for the active and passive torque mechanisms 

(Fig. 2) are summarized in the first part of Table I (Model I). The twitch contraction time T had 

an average value of 167 ms, implying a natural frequency of the second-order NMS dynamics 

model of approximately 6 rad/s. The mechanical stiffness gain K had an average value of 521 

Nm/rad, which accounted for 83 % of the subjects’ load stiffness (%TLOAD). Finally, using the 

identified values for T, G, and K, the goodness of fit evaluation revealed a high level of matching 

between the measured and predicted ankle torque. For the optimization, the goodness of fit had 

an average value of 98.4 %, a minimum of 97.3 %, and a maximum of 99.2 %. For the 

validation, it had an average value of 96.7 %, a minimum of 87.9 %, and a maximum of 98.6 %. 

A paired t-test revealed that there was no difference in %Fit between the optimized and validated 

data (P = 0.056). 

B. Neural-Mechanical Control Scheme 

In Fig. 5, examples of the total ankle torque fluctuation from the experiments and the 

simulations of the neural-mechanical control scheme (Fig. 3) are shown. Fig. 5a depicts the 
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fluctuations from the optimization trial and Fig. 5b the fluctuations from the validation trial. In 

each plot, the bold gray line marks the experimental ankle torque and the thin black line the 

predicted ankle torque using the mechanical and neural controllers. A visual inspection suggests 

that the predicted ankle torque closely matched the ankle torque measured during quiet stance. 

Note that both plots in Fig. 5 also show the predicted passive and active torque components 

using dashed and dotted lines, respectively. 

The optimization and validation results for the model of the neural-mechanical control 

scheme (Fig. 3) are summarized in the second part of Table I (Model II). The neural controller’s 

proportional gain Kp and derivative gain Kd had average values of 126 Nm/rad and 158 

Nms/rad, respectively. Using the identified values for T, K, Kp, and Kd, the goodness of fit 

evaluation revealed a high level of matching between the measured and predicted ankle torque. 

For the optimization, the goodness of fit had an average value of 98.3 %, a minimum of 97.5 %, 

and a maximum of 98.9 %. For the validation, it had an average value of 96.6 %, a minimum of 

85.3 %, and a maximum of 98.7 %. A paired t-test revealed that there was no difference in %Fit 

between the optimized and validated data (P = 0.112). 

C. Methodological Verification 

The three-way ANOVA performed with the parameter estimates obtained in the 18 

robustness optimizations failed to reveal significant differences within and between factors 

(P>0.9) – and this for all five parameters T, G, K, Kp, and Kd. As such, there is no evidence that 

the fitting results were affected by the choice of data set, cut-off frequency, and damping gain B. 

Taking also into account that the intra-subject variation of the parameter estimates was much 

smaller than the inter-subject variation (SD ratios in last column of Table I), we conclude that the 

inter-subject variability reflects, in fact, differences among subjects and not simply a lack of 
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precision in the estimations. 

Fig. 6 depicts the pool-average power spectra of the body angle and ankle torque 

fluctuation (frequency range up to the noise floor). The pool-average twitch contraction time T – 

the parameter that would be most likely affected by the choice of cut-off frequency of the applied 

low-pass filter – did not significantly change for the different filter scenarios (as confirmed by 

the ANOVA). This can be explained by the fact that the higher frequency components (>10 Hz) 

– which presumably originate from noise – had a significantly lower power than the slow 

frequency components (<1 Hz). 

The Nyquist stability analysis demonstrated that the identified parameters (T, K, Kp, and 

Kd) along with the pre-set parameters (B = 5 Nms/rad, τF, and τM) yielded a stable system for all 

fourteen subjects when implemented in the previously used closed-loop feedback model of quiet 

stance [14]. The results of the simulation component indicate that the parameters of the perturbed 

closed-loop feedback model could be identified reliably when using the simulated time series 

(Fig. 7). In particular, the coefficients of determination (R2) for the parameters T and K were 

both 99.9 %; Kp and Kd were on average slightly over- and underestimated, with R2 values of 

96.3 % and 99.8 %, respectively (Fig. 7). A paired t-test finally revealed no significant 

differences (α = 0.1) between the parameters implemented in the closed-loop model and the 

parameters identified via the optimization models (Models I and II). 
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IV. DISCUSSION 

One of the two most significant results obtained from the torque matching procedure is 

that the active and passive torque mechanisms depicted in Fig. 2 can accurately generate the 

physiological ankle torque fluctuation during quiet stance. The identified torque contributions 

from the two mechanisms reveal that not only the passive, but also the active ankle torque 

mechanism contributes significantly to the total ankle torque and, hence, to body stabilization. A 

second significant result was that the neural-mechanical control scheme shown in Fig. 3 

successfully mimics the physiological control strategy during quiet stance and that a PD 

controller is a legitimate model for the strategy that the CNS applies to regulate the active ankle 

torque in spite of a long sensory-motor time delay. 

For both models, the high level of matching between the experimental and predicted 

ankle torque could not only be achieved during the optimizations, but also when the identified 

parameters were used with new sets of data (validations). In fact, no differences in %Fit were 

found between the optimized and validated data. Another common measure for quantifying the 

fit between two time series, the Variance Accounted For (%VAF) [32], [42]-[44], yielded even 

better results: for both models, %VAF had mean values of over 99.9 % and 99.7 % for the 

optimizations and validations, respectively. 

Also other studies have attempted to characterize the balance control scheme during quiet 

stance [8]-[10], [24], [45]. The present study is unique, however, as it identifies: 1) the active and 

passive torque contributions; and 2) the parameters of a stable neural-mechanical control scheme 

that accurately predicts the physiological ankle torque fluctuation while considering the stability-

threatening NMS dynamics [14]. Note that the obtained parameters cannot only evoke the 

physiological ankle torque, but also ensure a stable system for all subjects when used in a closed-
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loop feedback model of quiet stance [14]. 

A. Characteristics of Active and Passive Torque Mechanisms 

The identification of the torque mechanisms revealed that the mechanical controller alone 

cannot yield an optimal fit between the measured and predicted ankle torque. In spite of the 

permitted optimization ranges for K (up to 150 % of TLOAD) and G (including 0 Nm/V), the 

identified stiffness gain K of the mechanical controller accounted for only 83 % of the subjects’ 

average load stiffness (see Table I). Loram and Lakie [8] and Casadio et al. [9] measured the 

ankle stiffness using small postural perturbations and suggested that K can have a value between 

64 % [9] and 91 % [8] of the load stiffness during standing. Morasso and Sanguineti [7] 

estimated the potential contribution of K as 60 % of the load stiffness based on a simulation 

study and previously reported values. While our result agrees with these experimental findings 

on the ankle stiffness, it provides more concrete evidence that most, but not all of the required 

ankle torque during standing is generated by the passive torque mechanism. In fact, between 68 

and 91 % of the stabilizing torque is delivered by the passive torque mechanism and, as such, not 

subject to the phase delay induced by the NMS dynamics and the other feedback time delays. 

Our findings emphasize, however, that the passive torque cannot stabilize the body alone, and 

that stability during quiet standing is achieved with the help of a neural control mechanism at the 

CNS level. 

The high %Fit in the optimization of the torque mechanisms also proved that the adopted 

second-order system characterized the NMS dynamics from plantar flexion activation (EMGSOL) 

to active ankle torque very well. The identified twitch contraction time of 167 ms (see Table I) 

agrees with our previous study in which T was identified using a different methodology (152 ms 

on average) [14]. Although other T values reported for SOL (86-125 ms) [33], [34], [46] are 
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smaller than the value of the present study, this can be attributed to the fact that they were 

obtained during a sitting [33], [46] or prone position [34], i.e., when the ankle joint and muscle 

conditions are unlike those during standing. In addition, also the motor tasks in these studies 

were very different compared to standing as they were characterized by the exertion of impulsive 

voluntary torque at 30 % of maximum voluntary contraction [33] and the application of electrical 

stimulation [34], [46]. In this context, we believe that smaller T values would have been found 

for the non-filtered time series if the ankle torque had exhibited more power at higher 

frequencies. Our results, however, agree with previous studies, indicating that the kinematics and 

torque data during quiet standing are dominated by very slow frequency components of up to 1 

Hz (e.g., [26], [47]). 

Also Kearney and his colleagues studied active and passive torque mechanisms of the 

human ankle joint [44], [48]. In their work, a parallel-cascade system identification method was 

used to successfully separate and characterize intrinsic and reflex stiffness components that 

contribute to the overall ankle joint stiffness during position perturbations [44]. While the 

properties of the intrinsic stiffness component closely resemble those of the passive torque 

mechanism in the present work (e.g., elastic and viscous components), the identified parameter 

values differ significantly due to differences in ankle joint position, load, and muscle activation 

level [14], [48]. In addition, a stiffness component originating from peripheral reflex 

mechanisms should not be present during quiet standing as the sensitivity of the muscle spindle 

afferents is too low [44] to detect the slow ankle joint motion during body sway [26]. In fact, the 

contribution of local stretch and other reflexes during quiet standing has been ruled out by Loram 

et al. on the basis of timing [17]. Consequently, also the static nonlinearity in form of a 

unidirectional rate-sensitive element should not contribute to the ankle joint dynamics during 



Neural-Mechanical Control Scheme of Quiet Stance                               Vette 

 

 19

quiet standing. In a broader sense, the active torque mechanism described in the present study 

may yet be understood as a form of stiffness mechanism that is continuously [49]-[51] or 

intermittently [17], [52] regulated by higher centers of the CNS. From this point of view, the 

studies by Kearney et al. [44] and our team are similar in the way that they both identify the 

contribution of intrinsic and neural mechanisms to the ankle torque generation (for different 

tasks), and this by analyzing experimental data within a modeling framework. 

B. Characteristics of Neural Controller within Neural-Mechanical Control Scheme 

The average values for Kp and Kd were 126 Nm/rad and 158 Nms/rad, respectively (see 

Table I). The implication that the average Kp/Kd ratio with a value of 0.8 s-1 is relatively small 

when compared to conventionally implemented PD controllers shows that the Kd gain plays a 

significant role in the neural controller: it needs to compensate for the stability-threatening 

sensory-motor time delay, which has been suggested to be much longer than previously assumed 

due to the delay effect of the NMS dynamics (larger than 280 ms) [14]. Note that the Kp/Kd ratio 

is even smaller than in our previous study [24] since it investigated only the potential of the 

neural PD controller without considering the contribution of the mechanical controller. 

Therefore, the Kp/Kd ratio had to be higher in that study [24] to account for the predominant 

effect of the mechanical stiffness gain K that is much higher than the mechanical damping gain 

B. 

Finally, we emphasize that the proposed PD control strategy within the neural-

mechanical control scheme is a descriptive model that can mimic the behavior of the neural 

controller. As such, it does not necessarily represent the actual neural control system during quiet 

stance. To realize this concept, predictive [12], adaptive [13], and internal model [20] control 

mechanisms have been proposed. The actual neural control system, however, that elicits the 
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active torque component should be investigated in future studies. 

Nevertheless, the proposed descriptive control scheme can become very useful when 

designing prostheses and neuroprostheses for standing (see also [2] and [25]). To accomplish this 

goal, many other challenges need yet to be addressed. These include the implementation of a 

sensor for measuring balance and the prevention of foot movement during standing, the 

reduction of FES induced muscle fatigue, and the selection of the muscles that need to be 

actuated by means of FES to generate the required torques at different joints (ankle, knee, and 

hip). The last challenge is additionally complicated by the fact that some of the targeted muscles 

are actually two joint muscles, making the regulation of particular joints more complex. 

C. Limitations 

In the present study, the parameters of the neural-mechanical control scheme were 

identified by minimizing the error between the experimental and predicted ankle torque data. 

Since these so-called optimizations do not guarantee that the true values are found, the obtained 

results have to be interpreted with care. It has to be emphasized, however, that the determined 

values: 1) lie in physiological ranges; 2) ensure a stable closed-loop feedback system; and 3) are 

in agreement with previous experimental findings [8], [9], [14], [45]. 

One of the main limitations of the present study is that parameter identifications using 

closed-loop systems may result in incorrect structures as well as parameter estimates, and that 

differences in estimates with/without external perturbations may reflect either differences in the 

system or in estimation. In particular, parameters identified during quiet standing may depend on 

the frequency content of internal perturbations [53], which cannot be measured. Consequently, it 

has been suggested that external perturbations are needed to study the closed-loop control of 

quiet stance [53]. The actual dynamic and control properties of quiet standing may, however, not 
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be identical to the ones when quiet standing is perturbed via external sensory or mechanical 

perturbations. Therefore, we believe that it is yet beneficial to study a closed-loop system such as 

quiet standing without applying external perturbations – while acknowledging that the acquired 

system parameters may potentially be biased [53]. Most importantly, the results of the simulation 

component of this study provide strong evidence that the parameters of the feedback system 

could be identified reliably (Fig. 7) when using the perturbation characteristics (dynamics and 

entry point) from our previous study [24]. 

The optimized parameters exhibited a high level of variation among the fourteen subjects. 

This variation can be explained by the fact that particular subject characteristics that vary from 

subject to subject have a strong influence on the obtained parameters. They include, for example, 

the subject anthropometrics (K, Kp, and Kd) and the mechanical properties of the ankle joints 

and muscles (T and K). Note that the variation of the control gains (K, Kp, and Kd) is in 

agreement with our previous study, which demonstrated that a considerable gain variation will 

not threaten the stability of the system [14]. 

For the identification of the NMS dynamics, we adopted a single muscle model based on 

the assumption that SOL is the most important contributor to the ankle extension torque. The 

high %Fit in the optimization analysis (Model I) proved that this assumption was appropriate. 

However, one has to acknowledge that also the gastrocnemius muscle shows some minor activity 

during standing, which must somehow contribute to the overall torque generation. Nevertheless, 

the influence of the NMS dynamics on the control mechanism of quiet standing is believed to 

remain very significant. 
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V. CONCLUSIONS 

Our results provide strong evidence that not only the passive, but also the active ankle 

torque mechanism contributes significantly to the total ankle torque and, hence, to body 

stabilization during quiet stance. In addition, we conclude that the proposed neural-mechanical 

control scheme successfully mimics the physiological control concept during quiet stance. 

Taking our previous findings into account, we suggest that a PD control strategy is a legitimate 

model for the strategy that the CNS of healthy individuals applies in order to regulate balance 

during quiet standing. Supported by our fitting results, we believe that a control scheme that 

considers the mechanical controller and utilizes neural PD control gains with a relatively small 

Kp/Kd ratio can, in fact, overcome a large sensory-motor time delay and stabilize the body 

during quiet stance. The future goal is to implement this control strategy in combination with an 

FES system to assist individuals with SCI to perform ADL while standing. 
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TABLE I.  OPTIMIZATION RESULTS FOR MODEL I (ACTIVE AND PASSIVE TORQUE MECHANISMS) 

AND MODEL II (NEURAL-MECHANICAL CONTROL SCHEME) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inter-Subject Intra-Subject 

Values Variation (SD) Model Parameter/Fit 

Mean SD Mean SD Inter

Intra

SD

SD
 

T [ms] 167 29 6 2 21% 

G [Nm/V] 58 37 2 3 5% 

[Nm/rad] 521 95 4 6 4% 
K 

[%TLOAD] 83 7 < 1 < 1 4% 

%Fit Opt [%] 98.4 0.5 – – – 

I 

%Fit Val [%] 96.7 2.9 – – – 

Kp [Nm/rad] 126 47 4 6 9% 

Kd [Nms/rad] 158 71 9 5 13% 

%Fit Opt [%] 98.3 0.5 – – – 
II 

%Fit Val [%] 96.6 3.6 – – – 
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Fig. 1.  Neural-mechanical control concept of quiet standing. The passive torque depends on the 

rotational ankle joint, muscle, and ligament properties (stiffness and damping), whereas the 

active torque is regulated by the CNS via the body kinematics and generated by the contractions 

of the plantar flexors. Since the sensory-motor time delay within the neural feedback loop (τF + 

τM + τE) threatens the stability of the system, it has to be compensated for by the neural 

controller. 
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Fig. 2.  Model of the NMS dynamics and the mechanical controller. A critically damped, second-

order low-pass system was used to model the NMS dynamics between muscle activation and 

active ankle torque (upper dashed box). The mechanical controller with gains for the rotational 

stiffness (K) and damping (B) generated the passive ankle torque based on the body angle 

fluctuation during quiet standing (lower dashed box). 
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Fig. 3.  Feedback model of the neural-mechanical control scheme of quiet standing. The neural 

PD controller (upper left dashed box) generated the motor command for the plantar flexors 

(upper right dashed box) based on sensory information about the body kinematics. The resulting 

active ankle torque in addition to the passive ankle torque from the mechanical controller (lower 

dashed box) yielded the total ankle torque fluctuation. 
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Fig. 4.  Experimental time series and ankle torque predicted via the active and passive torque 

mechanisms depicted in Fig. 2 (validation). Shown are the fluctuation of the body angle (a), the 

right EMGSOL (b), and the experimental ankle torque (bold gray line) and predicted ankle torque 

(thin black line) (c). The dashed and dotted lines in Fig. 4c represent the predicted passive and 

active torque components, respectively. 
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Fig. 5.  Ankle torque fluctuation from experiments (bold gray lines) and predicted via the model 

of the neural-mechanical control scheme (thin black lines). The dashed and dotted lines represent 

the predicted passive and active torque components, respectively. Fig. 5a shows the ankle torque 

fluctuation from the optimization trial and Fig. 5b from the validation trial. 
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Fig. 6.  Pool-average power spectra of body angle (a) and ankle torque fluctuation (b). The pool-

average twitch contraction time T (or the system’s natural frequency ωn) did not significantly 

change with different cut-off frequencies (fc) of the low-pass filter (body angle and ankle torque). 
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Fig. 7.  Results of the model structure and parameter verification. A good fit was found between 

the parameters implemented in the closed-loop feedback model and those optimized via the 

optimization models (Models I and II). The subjects’ parameters T and K had both an R2 value of 

99.9 %; Kp and Kd were on average slightly over- and underestimated, with R2 values of 96.3 % 

and 99.8 %, respectively. 

 


