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Abstract— A methodology is investigated for determining the of the neural systems governing processes such as reaching
location of active pathways in a peripheral nerve using measure- [1], bladder control [2], and many more. Furthermore, if the
ments from a multi-contact cuff electrode. The problemis treated |,calization could be performed in real-time, the inforioat

as an inverse problem of source localization and solved using . . - . .
the SLORETA algorithm, developed for the EEG/MEG source exchange with a given limb could be monitored, interpreted,

localization problem. Simulated measurements are generated and used to control a neural prosthesis.

corresponding to action potentials traveling along either one or . . . .
three pathways in a rat sciatic nerve. The performance of the Current techniques for recording the electrical activify o

proposed methodology using these measurements is evaluated?€ripheral nerves can be d_ivided into two broad C_ategories,
in terms of localization error, missed pathways, and spurious each of which has shortcomings. Extraneural recordingst mo

pathways. The source localization performance when assuming commonly obtained using nerve cuff electrodes, can detect
an idealized nerve anatomy is compared to that when the correct variations in the activity of the nerve as a whole, but teqbei

anatomy is known. The effect of a spatio-temporal constraint . - - . o
based on the nerve anatomy and electrophysiology is also t0 determine the specific location of that activity withireth

investigated. The approach in its present form was not found to nNerve remain insufficient. In particular, the selectivityat
be sufficiently reliable for sub-fascicular localization in practice, can be achieved with cuff electrodes has been studied [3]-

due to mean localization errors in the 14@m-180um range, high  [6], but little work has been done on how to actually identify
numbers of spurious pathways, and low resolution. Nonetheless, an arbitrary combination of active pathways using recasin

the constraints were shown to produce a marked reduction in f th f f th Int | mi lectrod
the number of spurious pathways. Conditions under which the rom the suriace o € nerve. Intraneural microelectrode

source localization approach may be useful for peripheral nerves arrays, on the other_hand, can give us information about
are discussed. activity close to the tips of the microelectrodes, but asray
Index Terms— Bioelectric source localization, cuff electrode, dense.enoggh to achieve good coverage O_f the nerve are much
peripheral nerve interface, rat sciatic nerve, neural modeling. ~ more invasive than cuff electrodes, may inadvertently eaus
damage to the nerve when implanted or during movement,
and may be too big for smaller nerves [7].
I. INTRODUCTION

With this problem in mind, the simulation study presented
U NDERSTANDING the neural processes that underly thﬁere investigates a new strategy for localizing bioelectri
functioning of the human body is an enormous taslé,

. . ctivity in a peripheral nerve. Using potential recordirfigsn
which has led to countless studies of the central nervous Y Perip 9p

. _multiple sites at the periphery of the nerve, obtained from a
system .(CNS)' Of course, although the aCtF‘a' informati ulti-contact cuff electrode, the problem can be formwate
processing and control systems are located in the CNS,

; i . ¥ a modified version of the distributed electroencephalo-
control signals that flow in peripheral nerves are also
valuable source of information. Our ability to monitor th

ram/magnetoencephalogram (EEG/MEG) source localizatio
signals in specific neural pathways is, however, somew

r}oblem [8]-[13]. Although the proposed scheme essentiall
limited, particularly if the technology used must be appiakg Is into the category of extraneural recording methods, i

is differentiated from previous studies both in the details
%ﬁ‘ the instrumentation (i.e. the number of contacts placed
peripheral nerve would therefore be useful in several ltﬁspein the cuff electro_d e) and of the data p_rocess_ing alg_o rithm
Such technology would make it easier to characterize tl(%erve cuff rec_ordmgs are usually examined with tradiion
ue 9y sifinal processing algorithms [14]-[17], whereas here we us

control signals being exchanged between the CNS and a Imé hniques from the field of inverse problems). Some attempt

or organ, thereby allowing us to deepen our understandlﬁgve been made to separate the activity of different faesicl
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improve our ability to localize bioelectric activity withia
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Il. METHODS
A. Approach to solving the source localization problem

In order to obtain an estimate of the source distributiomfro

RIS, VOL. X, NO. X, X 2009

TABLE |
PARAMETERS FOR THEIDEALIZED FINITE ELEMENT MODEL OF THE RAT
SCIATIC NERVE

N Parameter Values References |

the cuff electrode measurements, there are two problens thgz— length Tom
need to be addressed: the forward and the inverse problé&mEadoneurium radius 360 um 29]
The goal of the forward problem is to compute the measurg@erineurium width 25 pm 4]
potentials that would result at each contact from a souree gt EPineurium width __| 35pm 30], [31]

i location. This information can be represented in ixat Encapsulation ssue layer width | 49 ym .
given focation. : P Mall™saline Tayer width 40 um 4, [31]
form, and is known as the leadfield matrix. The leadfield JSCuff length 2.3 cm 28
needed to solve the inverse problem, whose goal is to estimaguff width 30 um 28
the source distribution from the measurements. 232 ;";‘gr'gﬁg Faght i0305“;‘n .
_ Due to the iII-pos_ed and_ underdetermi_ned_ nat_ure of th&aiine bath length 5cm
inverse problem of bioelectric source localization, inertb | Saline bath radius 0.48 cm 4], [6]
arrive at a unique solution it is necessary to impose congsra E”gonew!um CO”SUC:!V!W (radial g-églxsl/()’Z S/m gd 32]2, [32]
on the solution [22]. These constraints should be deterdnine(lgngi?f;rr:g?; conductivity : m {6]]’[3[3]]’
by the anatomical and physiological features of the proldém| Perineurium conductivity 2.1 x 10~3 S/m | [6], [30], [33]
hand. In our simulations, we will investigate the performen | (all directions) _ ,
of the source localization approach when varying levels ogl’l”zj?g'c‘:ig‘ng’”d“C“V'ty 8.26 x 107 S/m | [6], [33]
information about the nerve are incorporated into the @bl =g, capsufation tissue conductivity] 6.59 x 102 S/im | [31]
An overview of the process is given below, and details abqgutall directions)
each aspect of the simulations are presented in the foltpwinSaline conductivity (all directions} 2 S/m {2]0],[3[311],
sections. Cuff conductivity (all directions) | 1 x 10~7 S/m [6]

« First, create two numerical models of the nerve: a) one
with an idealized geometry and b) the other with a

more realistic geometry. A leadfield is generated frorylindrical nerve surrounded by a cuff electrode and placed
each model, and the more realistic model is used {9 a saline bath. The nerve was modeled as three concen-
generate simulated measurements, which will be usedtift cylinders representing the endoneurium, perineuramd
all simulations. epineurium layers. The nerve and the cuff were separated by
« Second, develop a spatio-temporal constraint based on #eencapsulation tissue layer and a saline layer (left pafnel
electrophysiological behaviour of myelinated axons.  Figure 1). The dimensions and conductivities of the various
« Third, evaluate the localization performance in four casegart of the nerve model are given in Table | and based
which are: (1) using the idealized leadfield and no spatign related models and anatomical studies described in the
temporal constraint (case IL), (2) using the idealizegterature. 56 electrode contacts were placed on the inside
leadfield and the spatio-temporal constraint (IL-C), (3he nerve cuff, organized in 7 rings of 8 electrodes each. The
using the correct leadfield (i.e. the one obtained frogfimensions of the cuff electrode and the layout of its castac
the more realistic geometry and used to generate thee based on an existing “matrix” cuff electrode [28]. The
measurements) and no spatio-temporal constraint (Ckatio of the bath and nerve diameters is large enough to avoid
and (4) using the correct leadfield and the spatio-tempoidundary effects [6], and the nerve segment is long enough
constraint (CL-C). The first of theses cases incorporatgfat dipoles placed at its ends have a negligible impact en th
the least information about the problem into the invers@easurements. The number of mesh elements in the model's
problem solution, whereas the last case incorporates #ejoneurium was 56,400.
most information. The second FEM model was based on a trace of a cross-
1) The forward problem:The forward problem is well- section of a rat sciatic nerve, at the level where the nerve
defined and can be solved analytically for simple geometribegins to divide into its tibial and peroneal branches. The
and conductivity distributions. Unfortunately, the arispic image that formed the basis of the trace was obtained from
conductivity of nerves and the potentially irregular shape the literature (Figure 1C in [29]). The dimensions of thefcuf
the fascicles mean that we must resort to numerical tedmd the bath were the same as in the previous model, as were
nigues. Specifically, the forward problem is solved usingdin the conductivities. In order to fit the nerve into the cuff, it
element modeling (FEM). In EEG/MEG source localizationyas scaled to 90% of its original size. This is a considerably
the method of choice is often the boundary-element methsiinpler process than morphing the mesh to conform to the
(e.g. [23]-[25]), but FEM is better suited to anisotropimeo shape of the cuff, and was deemed acceptable for the purposes
ductivities [26], [27] and for that reason is used here. of this study. It is important to clarify that this geometsysiill
The first FEM model was built based on the idealized gsimplified, in that it is uniform in the longitudinal direot,
ometry of a unifascicular section of the rat sciatic nervieisT and as such does not represent the progressive branching of
extended unifascicular geometry is a simplification coragarthe nerve. The cross-section that was selected as the basis f
to the real anatomy, which would branch progressively inthe trace was chosen because it corresponds approximately
several fascicles. The main components of the model werecawhere the half-point of the cuff would be located on the
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Fig. 1. Cross-sections of the idealized (left) and more s&al(right) FEM model geometries used to construct the lelaldfie

sciatic nerve, assuming the cuff was implanted just prokimang of the cuff, then averaging those values. The resulting
to the division of the nerve into its main branches. It hambe®oise standard deviation was used to generate Gaussia@ whit
shown that the shape of the nerve will conform to that of thaise time series for each of the 56 contacts. This noise rep-
cuff during chronic implantation [34]. Therefore, the gegirg resents the remaining contamination after appropriaterifil
used here corresponds to a situation in which the cuff hasd noise reduction measures have been used.
only been implanted for a short time, which is interesting fo Measurements corresponding to two situations were simu-
the purposes of this study, because the difference betviieenltited: a single active fiber, and three active fibers. Each of
“realistic” geometry and the idealized one will be greateshe two cases was repeated 100 times, with the positions of
at that time. The cross-sections of both FEM models atiee active fibers within the endoneurium generated randomly
shown in Figure 1. The number of mesh elements in theery time. For the case of three active fibers, the waveforms
second model's endoneurium was 218,400 (the more compfex all three fibers were identical but a random time shift was
geometry required a finer mesh). applied. The maximum allowable time shift was a quarter of
The finite element analysis was conducted using the SCIRte length of the simulation. Given the distance between the
computing environment [35], and the rest of the leadfieldodes of Ranvier and the length of the nerve model, each fiber
computations were performed using the Matlab software. Thes composed of 50 dipoles, each with its own time course.
procedure for obtaining the leadfield from the finite elemefthe source localization task described in the followingises
model is described by Weinste#t al. [26]. was therefore dealing with regions featuring either 50 d@ 15
2) Simulated measurement3o generate simulated mea-dipoles with varying magnitudes.
surements, a myelinated mammalian nerve fiber action poten3) The inverse problemThere are two broad categories
tial was first simulated using the model described by Sweenefy EEG/MEG source localization methods: equivalent dipole
et al. [36]. In order to remain consistent with the EEG/MEGnethods and distributed linear methods. Equivalent dipole
source localization literature, equivalent current dgsolvere methods assume that the potential measurements can be ex-
used to model the electrical activity of the nerve fibers. Thelained using a small number of equivalent dipoles, whose
magnitude waveform of the current dipole was therefore ohumber is set priori or estimated using the data and whose
tained from the first derivative of the transmembrane pddéntlocation, orientation, and magnitude must be determinathus
during the action potential [37]. The waveform was thesearch algorithms to fit the measurements [38], [39]. In the
propagated from one node of Ranvier to the next at a speedefipheral nerve problem, the combination of multiple \ati
approximately 50m/s [36]. The nodes of Ranvier were placditbers and the distribution of activity along the length oé th
1mm apart, which is consistent with a/Af-diameter fiber. fibers make the assumption of a small number of dipoles
The length of the simulation was 2ms. very hard to justify. The distributed linear methods, on the
Once the location and time course of the current sources tattler hand, formulate the problem as the estimation of the
been determined, the simulated measurements at the electrmagnitudes of a large number of dipoles whose locations
contacts were obtained using the second FEM model descrilzed! orientations are fixed. Electric fields add linearly, so
in the previous section. The reference for the measuremetits relationship between the measurements and the dipole
was the average of the two reference contacts present in thagnitudes can be expressed as the linear system in Equation
“matrix” cuff design (see [28]). Noise was then added to eadh
set of measurements, with the noise standard deviatioroset t
0%, 10%, 20%, 30%, and 40% of the signal standard deviation. d(n) = Lj (n) + e(n) (1)
The signal standard deviation for the purposes of generatin
the noise was estimated by computing the standard devéationHere,d(n) is the Mx1 vector of measurements at instant n,
of the measurements at each of the 8 contacts in the midflle) is the 3Nx1 vector of current dipole magnitudes at instan
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n, ande(n) is additive noise (assumed Gaussian). The Mx3témporal constraint can be implemented based on the formula
matrix L is the leadfield matrix, which relates the potentiah Equation 2.
measurement at each electrode contact to the existence of
a unit source at each possible location. It is constructed as V(x,t)=V(z—ds,t —ds/v) 2)
described in Section II-A.1. There are three leadfield colsim
for each of N mesh elements, corresponding to the threeV(x,t) is the transmembrane voltage at position x along the
orthogonal dipole orientations. Note that the system aheafibre and at time t, ds is the spatial distance separating two
time instant can be considered as independent of the othensecutive nodes of Ranvier, and v is the conduction vgloci
time instants because quasistatic conditions hold [40]. ds and v can be estimated from the diameter and type of the
The difficulty of recoveringj(n) from d(n) andL comes fibre. The formula is simply saying that the activity at a node
from the fact that the problem is underdetermined and ilis ideally identical to the activity at the previous nodewds/
posed. In order to obtain a stable solution, additional coeeconds in the past.
straints must be added to the problem. A number of reviewsPutting this equation to use assumes that the type (myeli-
are available that give an overview of the most commonly usedted vs. unmyelinated) and diameter of the fibres at a given
types of constraints [22], [41]. Here, the method chosen liscation in the nerve are known. Alternatively, even if no
the standardized low resolution brain electromagneticom information about the location of different fibre types is
raphy (SLORETA) method [10]. In the absence of additionalvailable, the constraint can be applied if a single type of
information about the solution, SLORETA usually outpenfisr fiber is active at a given time, by assuming that the whole
other instantaneous distributed linear methods, but doiss tnerve is composed of fibers of that type. In that situation,
at the cost of decreased spatial resolution. In other wordigfore performing the localization, one can identify thevae
it produces images that are blurred but have well-localizednduction velocity (and thus fiber type) from the multi-
peaks; this smoothness is imposed on the solution ascaentact cuff electrode using a method such as the one propose
constraint to deal with the ill-posed nature of the problenmy Rieger et al. [43].
The algorithm has been shown to localize single sources within order to incorporate this information as a constraint,
zero error in the noiseless case [10]. SLORETA consists of tuemporal coupling must be introduced into the problem. Ide-
steps: first, a regularized minimum-norm least-squaresgisal ally, the whole spatio-temporal system could be expressed
of Equation 1 is obtained; second, that solution is normedlizand solved as a single linear system, by concatenating the
using the diagonal of the resolution matrix, which providesieasurement and source vectors for all time instants [44],
information about the bias of the solution for each entry if45], This is shown in Equation 3, which is very similar
j(n). The regularization parameter is chosen here by means®fEquation 1, with the exception that the vectats, jec,
the cross-validation error function, as suggested by Ré&scuand ¢. include the complete information about the system
Marqui [10], [42]. at all time instants in the observation time window (i.e.
Our choice of algorithm is based on three criteria. First, #. = [d(1)Td(2)T...d(n)T]T, with equivalent definitions for
should not make the assumption that there are only a smillande., and n being the total number of time samplds).
number of active sources, as was already discussed abgyen block diagonal matrix, where each block is equalto
Second, it should be reasonably fast, in view of possibldi-app
cationina neuroprpst_hen_c system. Lastly, it should netiase . de = Leje + € A3)
that the source distribution generating the measurements i
stationary over a certain time interval, because outsida of The problem with this approach is that the number of
controlled experiment there would be no way to ensure thadriables is multiplied by the number of time instants, maki
the set of active pathways is not changing over the observatthe system intractable for any realistic application. Efiere,
period. SLORETA satisfies all three of these requirements. for computational reasons, we restrict ourselves to cogpli
In order to reduce the number of variables that need @o time instants at a time. Specifically, in accordance with
be solved for in the inverse problem, we can further restriglquation 2, we solve the systems corresponding to the pairs
the location and orientation of the dipoles. Active fibers caof time instants (t(1), t(1)+ds/v), (1(2), t(2)+ds/v), etis/v is
only be located in the endoneurium, so the perineurium ansunded to the nearest integer. To couple the solutionseof th
epineurium regions are removed from the solution space. T time instants together in the desired manner, a coupled
current dipoles that are used to model the extracellulad figkadfield and a non-diagonal weight matrix are constructed
of an action potential are oriented axially along the fib][4 as shown in Equation 4. In general, the weight matrix in a
so that dipoles in the other two orthogonal directions can laistributed linear method for this type of problem is apglie
eliminated from consideration, thereby reducing the numbg the norm of the solution in the minimum-norm least-
of variables by two thirds. squares problem and is used to applyriori constraints to
4) Spatio-temporal constraintKeeping in mind that the the solution. The incorporation of a weight matrix into the
basic approach to solving underdetermined inverse prableBl ORETA algorithm is described in the original paper by
is to constrain the solution based on our knowledge of theascual-Marqui [10].
problem, we investigate a spatio-temporal constraint dase
on the electrophysiology of nerve fibers. Assuming that we I { L 0 } Io— [ I -A } 4)

are applying what follows to myelinated fibres, a spatio- 0 L
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| is the identity matrix corresponding to the number of 2) Each peak in the estimate is associated with the true
variables in a single time instant, and A contains the spatia  pathway closest to it. A localization error is obtained
element of the constraint. If elements i and j of the solution  for each of the true pathways by computing the peak-
vector correspond to locations along the same pathway and to-peak distance between that pathway and the closest

separated by a distance ds, thép; is set to 1. In this way, of the estimated peaks assigned to it. The other peaks
each row of A corresponding to a location in a constrained  associated with that true pathway, if any, are counted as
pathway contains a single entry of value #,. therefore spurious peaks.

constrains those values in the solution at time t+ds/v teehav 3) True pathways that do not have any peaks associated
as close a value as possible to the element situated ds lower i  with them in Step 2 are counted as missed pathways.
the solution at time t by penalizing differences in theseiea)
as desired. o , IIl. RESULTS
In the case of our simulations, the constraint assumed
that the whole nerve was composed of myelinated fibres ©f One-pathway case
diameter 1@m with nodes of Ranvier spaced 1mm apart and The mean values over 100 trials of the localization error,
a conduction velocity of 50m/s. These values are the samenasnber of spurious pathways, and number of missed path-
the ones used to generate the simulated measurements. ways when a single true pathway is present are shown in
Figure 2. When the idealized leadfield was used with no
B. Evaluation of the results constraints, the localization error was relatively indegent
The characteristic of the solution that is of most interesff the noise level, with non-monotonic variations between a
to us is the position of the active pathways. For that reasaninimum of 0.137mm and a maximum of 0.166mm. When the
we are primarily interested in the position of the sources Bpatio-temporal constraint was added, similar non-marioto
a cross-section of the nerve, rather than in their longitaidi variations were observed between a minimum of 0.134mm
position. The three-dimensional solution can thereforpdoe and a maximum of 0.182mm. When the correct leadfield
jected onto a two-dimensional cross-section for the pieposvas used, a clear relationship with the noise was observed:
of computing an error metric. This is done by summing thiéhe error increase monotonically from 0.078mm to 0.166mm
absolute values of the activity of all the mesh elements withithout the spatio-temporal constraint, and from 0.081rom t
the same cross-sectional position. The value associatdd vil.175mm with the constraint. The statistical significanée o
each location in the resulting two-dimensional projectisn this finding was confirmed by the fact that, when testing the
therefore a representation of how much activity was spreeglationship between error and noise against a null hygaghe
along the length of the nerve at that position. This proces$ no correlation,p was less than 0.05 only in the cases
implies that a nerve fibre has a straight path with very littlehere the correct leadfield was used. The difference in tesul
radial deviation along the length of the nerve segment; lmea between the simulations with the idealized leadfield andeho
there may in fact be small deviatioms vivo, we stress that with the correct one is due to the geometry error. In other
the actual source localization in no way depends on thigords, even when the amount of measurement noise is low,
assumption. It is simply used to obtain useful metrics tine localization algorithm must still deal with a large ambu
evaluate the performance of the method in the context of th&error if the leadfield is based on an inaccurate model of the
simulations, and is justified here because the simulategeneregion. The relatively constant error in the idealized fedd
fibres were in fact straight. cases additionally seems to suggest that there is a plateau i
To further simplify the evaluation of the localization pess the amount of localization error as the noise increasegast |
and obtain concise metrics, we sum the estimates from fdt the range of values examined.
the time instants of a given trial before performing the two- Spurious pathways were seen to constitute the biggest ob-
dimensional projection. The three-dimensional activikero stacle to the applicability of the source localization azmh.
the time interval is therefore summarized as a single tw@he number of spurious pathways increased monotonically
dimensional source distribution. It is important to clarif with the noise in all cases (this relationship was staadiic
that summing the estimates of all the time instants does rEignificant in all cases except IL, possibly because the mumb
presuppose stationarity of the underlying sources; it Bimpof spurious pathways seems to reach a plateau early in that
provides an indication of what sources were active at sorsguation). When the idealized leadfield was used, the metric
point in the time interval. varied from 1.05 to 3.24. When the spatio-temporal condtrain
Lastly, the estimated source locations are obtained by finlas added, the range of values was from 1.14 to 2.51. When
ing the local maxima in the final two-dimensional projectiorthe correct leadfield was used without the constraint, thgea
These local maxima are used to estimate the localizati@m, eriwas 0.02 to 2.62, and with the constraint it was 0.06 to 1. 4. A
as well as the number of missed and spurious pathways. Tdearly visible in Figure 2, this data reveals that the amaifin
metrics are computed as follows: information incorporated into the source localizationtjeon
1) The mesh is interpolated onto a regular grid. The lochhs a direct impact on the number of spurious pathways: the
maxima are detected on this grid by comparing th&patio-temporal constraint led to a marked decrease regard
activity at each location with the activity at all locationsof the leadfield used, and the combination of the correct mesh
within 50um. The peak coordinates are obtained, and théth the constraint noticeably outperformed all of the othe
results mapped back onto the FEM mesh cross-secti@ases. One-way ANOVA followed by a multiple comparison
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Fig. 2. Localization errors, spurious pathways, and missgtivays for the one-pathway case (n = 100). IL: idealizedflell; IL-C: idealized leadfield
with spatio-temporal constraint; CL: correct leadfield; CtLcorrect leadfield with spatio-temporal constraint.

test between the four cases, performed at every noise lewel,52mm to 0.181mm. With the spatio-temporal constratiat, t
showed statistically significanp (< 0.05) differences between range was 0.155mm to 0.179mm. The errors when the correct
all pairs except the pair (IL-C, CL). This confirmed thdeadfield was used were once again an increasing function
differences qualitatively visible in Figure 2. The excepti of the noise § < 0.05), ranging from 0.083mm to 0.182mm
was the 0% noise case, in which the choice of leadfield ledthout the constraint, and from 0.087mm to 0.180mm with
to significant differences but the spatio-temporal comstidid the constraint. These results are very similar to those seen
not. Overall, the presence of the spatio-temporal comdtladl the one-pathway case.
to minor increases in localization error at high noise Isyel The general trends for spurious pathways were also similar
but marked reductions in the number of spurious pathways, those in the one-pathway case, including the effects of
which seems to be a worthwhile trade-off. The error increaise constraints. Although the increase with noise was not
was not statistically significantp(> 0.05), and may be due strictly monotonic in all cases, that was nonetheless #edtr
to the larger number of variables in the coupled problem. N < 0.05 in all four cases). The number of spurious pathways
missed pathways were observed, which is not surprisinghgiveehen the idealized leadfield was used varied from 0.47 to
that a single pathway was present in the region. 1.72 without the constraint, and from 0.64 to 1.15 with the
Figure 3 (panels a), c) and e)) shows an example ofcanstraint. When the correct leadfield was used, the range was
localization trial. The smoothing effect of SLORETA is dllsa from 0.02 to 1.24 without the constraint, and from 0.02 t80.8
visible, as is the presence of spurious pathways. Note thdth the constraint.
the trials shown in this figure (for both the one- and three- When multiple true pathways were present, the number of
pathways cases) are selected to help the reader visualiiesed pathways increased dramatically. The general trend
the concepts being discussed; they are not necessarily Wes an overall decrease as the amount of noise increased,
most representative of the method’s performance. For thathough this proved statistically significant only in theses
information, the reader should rely rather on the metriagith the correct leadfield. When the idealized leadfield was

discussed in the text and shown in Figures 2 and 4. used, the number of missed pathways ranged from 0.84 to
0.31 without the constraint, and from 0.84 to 0.58 with the
B. Three-pathways case constraint. When the correct leadfield was used, the range was

Panels b), d), and ) of Figure 3 show an example trial f(jfom 1.44 to 0.38 without the constraint, and from 1.57 t20.6

the three-pathways case. The mean values over 100 trialddf the constraint.

the localization error, number of missed pathways, and rumb

of spurious pathways when three true pathways are present ar IV. DiscussiON

shown in Figure 4. The localization error when the idealized The localization of active pathways in a peripheral nerve
leadfield was used with no constraints was again relativelyas approached as an inverse problem of bioelectric source
independent of the noise level & 0.05 under a null hypoth- localization, using simulated measurements from a 56aabnt
esis of no correlation), varying non-monotonically betweenerve cuff electrode. This is an ill-posed inverse problem,
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Fig. 3. Figure a) shows the normalized simulated measuremetdamet at all 56 contacts (7 rings of 8 contacts) for one ofahe-pathway trials. The

noise level is 20%. Figure c) shows the estimated pathwayairest by applying the source localization procedures tontleasurements in a), using the
idealized leadfield combined with the spatio-temporal ceistr Figure €) shows the true location of the pathway fos thial. Figures b), d), and f) show
equivalent data for one of the three-pathways trials. Ttapspeaks seen in the estimates are not part of the sourcé&édimal solution itself, but rather are
the ouput of the peak detection algorihtm, superimposed omsdhgion. Likewise, the nerve outlines on the floors of figueg-f) are not part of the source
localization, but have been added to help the reader vimudtie location of the pathways within the nerve (idealizedtamy for the estimated pathways in
Figures c) and d), and realistic anatomy for the true pathvimysgures e) and f)).

and problems of this class can only be solved satisfactdrilythree-pathways case is related to the way that the metrios we
sufficient appropriate constraints are imposed on the isolut computed. Recall that each true pathway is associated with
We therefore compared the performance of the approach usihg closest estimated pathway. Therefore, if there areraleve
idealized and correct models of the nerve geometry, and dpurious estimated pathways distributed across the retfien

the presence of a spatio-temporal constraint based on there is a greater chance that some of them will be associated
electrophysiology of myelinated nerve fibres. As expectedjth a true pathway and therefore reduce the number of missed
the overall performance improved as more information wamthways. This explains why the number of missed pathways
incorporated. Nonetheless, most of the simulated cases kigdreases as the number of spurious pathways increases, and
mean localization errors in the 15 to 18Qum range (in a furthermore why cases that have the best performance in the
720um-diameter endoneurium, with Afh-diameter individual other metrics (e.g. the combination of the correct leadfeld
fibres), and unacceptably high humbers of spurious pathwatee spatio-temporal constraint) have more missed pathvirys
Only at very low noise levels and with accurate constraifds dlight of this limitation of our metrics, the most revealinglues

the performance reach levels that would make the approdohthe number of missed pathways are the ones corresponding
reliably usable in practice. Even in those situations, h@re to cases with very few spurious pathways. For instance, the
the number of missed pathways was high, due partly to teenulations using the correct leadfield with the constraint

low resolution of the SLORETA method. Note that the decreaf86 and 10% noise have close to 0 spurious pathways. In
in the number of missed pathways as noise increased in these cases, the number of missed pathways is approximately
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Fig. 4. Localization errors, spurious pathways, and missgtwpays for the three-pathways case (n = 100). IL: idealleadfield; IL-C: idealized leadfield
with spatio-temporal constraint; CL: correct leadfield; CLcorrect leadfield with spatio-temporal constraint.

1.5, or half the number of true pathways. This is a veng reasonable [43], it does nonetheless restrict the rafge o
high proportion, but it is not entirely unexpected. Rechéitt practical situations in which the constraint would be usabl
SLORETA imposes smoothness on the solution, and therefdirés therefore also used in this paper as much as a thedretica
is not capable of reliably distinguishing closely spacaarees. tool to examine the effects of constraints as a suggestioa fo
Therefore, if two pathways are close to one another, thely wiractical technique. Overall, there is no doubt that morekwo
be lumped together in the estimate, thereby producing whisse required to develop constraints that are both useful from
pathways. In addition, our determination of the locatiorihef the point of view of the inverse problem and whose practical
estimated pathways is based on local maxima. Upon visuiplementation is realistic.

inspection, however, it becomes clear that pathways do notyiore generally, if the peripheral nerve source localizatio
always produce local maxima, but may significantly affeet thapproach is ever to be usable as part of a neuroprosthetic sys
shape of the solution in other ways (for example by producingm, several advancements are needed. First, noise realisti
elongated ridges). There is therefore a need for a bettdratlet essential, and could take the form of improved instruméntat
of identifying the estimated pathways, but given the valitgh petter isolation of external signals at the cuff level, oume
of shapes and magnitudes that may occur this is not a trivigbdulation techniques to boost the amplitude of the recbrde
problem and is outside the scope of this paper. nerve signal [46]. Second, methods should be investigated
Some remarks are in order regarding the way that ite obtain precise images of a nerve’s anatomyivo. For
formation was incorporated into the problem in this studgxample, an adaptation of electrical impedance tomography
The simulations that use the correct leadfield and no noiszhniques [47] to peripheral nerves could be considenad!, a
should be considered a mostly theoretical situation udeful studies have already shown that fascicles within a nervdean
examining the effects of adding information, because suahaged using ultrasound [48]. It is interesting to note, Boev,
an exact correspondence will never be found in practicdat in our simulations the performance using only the spati
even if detailed anatomical information is available. Oe thtemporal constraint with the idealized leadfield (IL-C) was
other hand, when noise is incorporated into the simulation®t very far from that using only the correct leadfield withou
it can be interpreted as a combination of measurement nofle spatio-temporal constraint (CL), at least for case wit
and geometry noise (i.e. mismatch between the leadfield amzh-zero noise. This raises the possibility that if suffitie
reality), such that the simulations with high noise may beanophysiological and contextual information could be prodde
indicative of the expected performance in practical situest as constraints, and the noise brought down to a manageable
where anatomical information is available. As for the gpatilevel, then an idealized geometry could perhaps still bel.use
temporal constraint, it has already been mentioned thahen This would be analogous to using a three-sphere head model
absence of anatomical information about the layout of fibie the EEG/MEG source localization problem, as opposed to a
types in the nerve, it is useful only if a single type of fibrgatient-specific MRI-based anatomical model. Another eaus
dominates the nerve’s activity at a given time. Althoughsit ifor cautious optimism is that the performance for the very
feasible to ascertain in practice whether or not this assiomp idealized case of noiseless measurements and full camtstrai
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approached acceptable levels, which implies that the vemprkstation, localization for a single time instant usirge t
large number of dipoles in the region (50 per pathway iidealized leadfield and no constraints took approximately
this study) may not be an insurmountable obstacle in itsdlf second. When using the correct leadfield or the spatio-
to pathway localization. Importantly, although this studgis temporal coupling, the computation time increased roughly
written with an eye to applying the method to neuroprosthetproportionally to the number of variables to be solved for.
systems, the potential for neural system identificationtlfia While these computation times are not yet suitable for real-
case identifying the peripheral control signals involved itime implementation, it is nonetheless a realistic target a
specific tasks) is also very interesting, and has a diffeseht computational speed continues to increase and more efficien
of restrictions. In particular, in a context where repeatads implementations of the algorithm are explored. As mentibne
and off-line processing options are available, the noisgddco earlier, in situations where speed is not an issue, slower
be significantly reduced by trial averaging and a wider rasfge algorithms could be explored, for example ones based on Lp

algorithms explored, since computation time would no longaorms (e.g. [25]).

be as much of an issue. It may therefore be worthwhile to
keep exploring the source localization approach in thigeedn
For neuroprosthetic applications, sub-fascicular resnis do [1
not appear realistic on the short term, and the usefulness o%
the method as a framework for determining the activation o]
combinations of several fascicles will be contingent omuffet
developments like the ones discussed above (particulérly 8]
numerous small fascicles are involved, as is more likelyeo b
the case in humans). [4]
The present study aimed to estimate the overall viability
of the source localization approach. There are various$opi
that were not discussed in detail here but would become veh/]
relevant if the performance was improved enough to make
the approach usable. First, it is important to keep in mindf!
the very high temporal resolution of the method, which is not
reflected in the metrics used in this study. For each dipolg]
location, the algorithm produces a complete activationetim
series, making it possible to study transmembrane current
waveforms and firing frequencies for precise locations ing]
the nerve. Second, the influence of the number of contacts
on the performance would need to be explored. We limite
ourselves here to using a model of an existing electrode, but
as manufacturing techniques improve so will the number of
contacts that can be placed on a cuff, and this will undodnjvteqlo]
have an influence on the source localization performance.
There may also be a plateau to the benefits of increasing %15
number of contacts, such that the optimal number should
sought. Third, the number of pathways that the method can
accurately localize in a given situation should be deteeahin
The use of three pathways in this study was motivated lBlyZ]
the need to study a simple multi-pathway case, rather than by
physiological considerations. That said, the term “patfiwa[13]
should not necessarily be equated with a single nerve fibre,
particularly given the limited resolution and the coarsmne[14]
of the mesh. Multiple closely spaced nerve fibres that have
a functional relationship and a roughly synchronous firings
pattern (e.g. compound action potential) may therefore Eie
considered a single pathway, as could a very small fascic[lleé]
Similarly, the currents generated by a few isolated nerwvedib
that fire at the same time as a larger coordinated gro[ip]
of fibres elsewhere in the nerve may be drowned out and
confused with noise; in that case, they may be missed by the
algorithm, but may not significantly hamper the localizatio[1g]
of the “main” pathway. The last issue that deserves to lBleg]
discussed is that of computation time. Our choice of alpaorit
was partially based on its speed. On a 2.33GHz dual-processo
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