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Localization of active pathways in peripheral
nerves: A simulation study

Jośe Zariffa, Graduate Student Member, IEEE,and Milos R. Popovic,Senior Member, IEEE

Abstract— A methodology is investigated for determining the
location of active pathways in a peripheral nerve using measure-
ments from a multi-contact cuff electrode. The problem is treated
as an inverse problem of source localization and solved using
the sLORETA algorithm, developed for the EEG/MEG source
localization problem. Simulated measurements are generated
corresponding to action potentials traveling along either one or
three pathways in a rat sciatic nerve. The performance of the
proposed methodology using these measurements is evaluated
in terms of localization error, missed pathways, and spurious
pathways. The source localization performance when assuming
an idealized nerve anatomy is compared to that when the correct
anatomy is known. The effect of a spatio-temporal constraint
based on the nerve anatomy and electrophysiology is also
investigated. The approach in its present form was not found to
be sufficiently reliable for sub-fascicular localization in practice,
due to mean localization errors in the 140µm-180µm range, high
numbers of spurious pathways, and low resolution. Nonetheless,
the constraints were shown to produce a marked reduction in
the number of spurious pathways. Conditions under which the
source localization approach may be useful for peripheral nerves
are discussed.

Index Terms— Bioelectric source localization, cuff electrode,
peripheral nerve interface, rat sciatic nerve, neural modeling.

I. I NTRODUCTION

UNDERSTANDING the neural processes that underly the
functioning of the human body is an enormous task,

which has led to countless studies of the central nervous
system (CNS). Of course, although the actual information
processing and control systems are located in the CNS, the
control signals that flow in peripheral nerves are also a
valuable source of information. Our ability to monitor the
signals in specific neural pathways is, however, somewhat
limited, particularly if the technology used must be appropriate
for chronic implantation in humans. Methods or devices that
improve our ability to localize bioelectric activity within a
peripheral nerve would therefore be useful in several respects.
Such technology would make it easier to characterize the
control signals being exchanged between the CNS and a limb
or organ, thereby allowing us to deepen our understanding
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of the neural systems governing processes such as reaching
[1], bladder control [2], and many more. Furthermore, if the
localization could be performed in real-time, the information
exchange with a given limb could be monitored, interpreted,
and used to control a neural prosthesis.

Current techniques for recording the electrical activity of
peripheral nerves can be divided into two broad categories,
each of which has shortcomings. Extraneural recordings, most
commonly obtained using nerve cuff electrodes, can detect
variations in the activity of the nerve as a whole, but techniques
to determine the specific location of that activity within the
nerve remain insufficient. In particular, the selectivity that
can be achieved with cuff electrodes has been studied [3]–
[6], but little work has been done on how to actually identify
an arbitrary combination of active pathways using recordings
from the surface of the nerve. Intraneural microelectrode
arrays, on the other hand, can give us information about
activity close to the tips of the microelectrodes, but arrays
dense enough to achieve good coverage of the nerve are much
more invasive than cuff electrodes, may inadvertently cause
damage to the nerve when implanted or during movement,
and may be too big for smaller nerves [7].

With this problem in mind, the simulation study presented
here investigates a new strategy for localizing bioelectric
activity in a peripheral nerve. Using potential recordingsfrom
multiple sites at the periphery of the nerve, obtained from a
multi-contact cuff electrode, the problem can be formulated
as a modified version of the distributed electroencephalo-
gram/magnetoencephalogram (EEG/MEG) source localization
problem [8]–[13]. Although the proposed scheme essentially
falls into the category of extraneural recording methods, it
is differentiated from previous studies both in the details
of the instrumentation (i.e. the number of contacts placed
in the cuff electrode) and of the data processing algorithm
(nerve cuff recordings are usually examined with traditional
signal processing algorithms [14]–[17], whereas here we use
techniques from the field of inverse problems). Some attempts
have been made to separate the activity of different fascicles
in a nerve based on extraneural recordings, using either
blind source separation [18] or linear regression [19], [20];
the method proposed here in effect generalizes these ideas
and aims to obtain a more flexible framework, suitable for
differentiating activity not only between fascicles but also
within a single fascicle (albeit with limited resolution).A
similar source localization approach has been suggested for
the purposes of electrode targeting in the spinal cord [21].
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II. M ETHODS

A. Approach to solving the source localization problem

In order to obtain an estimate of the source distribution from
the cuff electrode measurements, there are two problems that
need to be addressed: the forward and the inverse problem.
The goal of the forward problem is to compute the measured
potentials that would result at each contact from a source ata
given location. This information can be represented in matrix
form, and is known as the leadfield matrix. The leadfield is
needed to solve the inverse problem, whose goal is to estimate
the source distribution from the measurements.

Due to the ill-posed and underdetermined nature of the
inverse problem of bioelectric source localization, in order to
arrive at a unique solution it is necessary to impose constraints
on the solution [22]. These constraints should be determined
by the anatomical and physiological features of the problemat
hand. In our simulations, we will investigate the performance
of the source localization approach when varying levels of
information about the nerve are incorporated into the problem.
An overview of the process is given below, and details about
each aspect of the simulations are presented in the following
sections.

• First, create two numerical models of the nerve: a) one
with an idealized geometry and b) the other with a
more realistic geometry. A leadfield is generated from
each model, and the more realistic model is used to
generate simulated measurements, which will be used in
all simulations.

• Second, develop a spatio-temporal constraint based on the
electrophysiological behaviour of myelinated axons.

• Third, evaluate the localization performance in four cases,
which are: (1) using the idealized leadfield and no spatio-
temporal constraint (case IL), (2) using the idealized
leadfield and the spatio-temporal constraint (IL-C), (3)
using the correct leadfield (i.e. the one obtained from
the more realistic geometry and used to generate the
measurements) and no spatio-temporal constraint (CL),
and (4) using the correct leadfield and the spatio-temporal
constraint (CL-C). The first of theses cases incorporates
the least information about the problem into the inverse
problem solution, whereas the last case incorporates the
most information.

1) The forward problem:The forward problem is well-
defined and can be solved analytically for simple geometries
and conductivity distributions. Unfortunately, the anisotropic
conductivity of nerves and the potentially irregular shapeof
the fascicles mean that we must resort to numerical tech-
niques. Specifically, the forward problem is solved using finite-
element modeling (FEM). In EEG/MEG source localization,
the method of choice is often the boundary-element method
(e.g. [23]–[25]), but FEM is better suited to anisotropic con-
ductivities [26], [27] and for that reason is used here.

The first FEM model was built based on the idealized ge-
ometry of a unifascicular section of the rat sciatic nerve. This
extended unifascicular geometry is a simplification compared
to the real anatomy, which would branch progressively into
several fascicles. The main components of the model were a

TABLE I

PARAMETERS FOR THEIDEALIZED FINITE ELEMENT MODEL OF THERAT

SCIATIC NERVE

Parameter Values References
Nerve length 5 cm
Endoneurium radius 360 µm [29]
Perineurium width 25 µm [4]
Epineurium width 35 µm [30], [31]
Encapsulation tissue layer width 40 µm [4]
Saline layer width 40 µm [4], [31]
Cuff length 2.3 cm [28]
Cuff width 30 µm [28]
Cuff radius 500 µm [28]
Cuff starting height 1.35 cm
Saline bath length 5 cm
Saline bath radius 0.48 cm [4], [6]
Endoneurium conductivity (radial) 8.26 × 10

−2 S/m [6], [30], [32]
Endoneurium conductivity 0.571 S/m [30], [32],
(longitudinal) [6], [33]
Perineurium conductivity 2.1 × 10

−3 S/m [6], [30], [33]
(all directions)
Epineurium conductivity 8.26 × 10

−2 S/m [6], [33]
(all directions)
Encapsulation tissue conductivity 6.59 × 10

−2 S/m [31]
(all directions)
Saline conductivity (all directions) 2 S/m [30], [31],

[6], [33]
Cuff conductivity (all directions) 1 × 10

−7 S/m [6]

cylindrical nerve surrounded by a cuff electrode and placed
in a saline bath. The nerve was modeled as three concen-
tric cylinders representing the endoneurium, perineuriumand
epineurium layers. The nerve and the cuff were separated by
an encapsulation tissue layer and a saline layer (left panelof
Figure 1). The dimensions and conductivities of the various
part of the nerve model are given in Table I and based
on related models and anatomical studies described in the
literature. 56 electrode contacts were placed on the insideof
the nerve cuff, organized in 7 rings of 8 electrodes each. The
dimensions of the cuff electrode and the layout of its contacts
are based on an existing “matrix” cuff electrode [28]. The
ratio of the bath and nerve diameters is large enough to avoid
boundary effects [6], and the nerve segment is long enough
that dipoles placed at its ends have a negligible impact on the
measurements. The number of mesh elements in the model’s
endoneurium was 56,400.

The second FEM model was based on a trace of a cross-
section of a rat sciatic nerve, at the level where the nerve
begins to divide into its tibial and peroneal branches. The
image that formed the basis of the trace was obtained from
the literature (Figure 1C in [29]). The dimensions of the cuff
and the bath were the same as in the previous model, as were
the conductivities. In order to fit the nerve into the cuff, it
was scaled to 90% of its original size. This is a considerably
simpler process than morphing the mesh to conform to the
shape of the cuff, and was deemed acceptable for the purposes
of this study. It is important to clarify that this geometry is still
simplified, in that it is uniform in the longitudinal direction,
and as such does not represent the progressive branching of
the nerve. The cross-section that was selected as the basis for
the trace was chosen because it corresponds approximately
to where the half-point of the cuff would be located on the
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Fig. 1. Cross-sections of the idealized (left) and more realistic (right) FEM model geometries used to construct the leadfields.

sciatic nerve, assuming the cuff was implanted just proximal
to the division of the nerve into its main branches. It has been
shown that the shape of the nerve will conform to that of the
cuff during chronic implantation [34]. Therefore, the geometry
used here corresponds to a situation in which the cuff has
only been implanted for a short time, which is interesting for
the purposes of this study, because the difference between the
“realistic” geometry and the idealized one will be greatest
at that time. The cross-sections of both FEM models are
shown in Figure 1. The number of mesh elements in the
second model’s endoneurium was 218,400 (the more complex
geometry required a finer mesh).

The finite element analysis was conducted using the SCIRun
computing environment [35], and the rest of the leadfield
computations were performed using the Matlab software. The
procedure for obtaining the leadfield from the finite element
model is described by Weinsteinet al. [26].

2) Simulated measurements:To generate simulated mea-
surements, a myelinated mammalian nerve fiber action poten-
tial was first simulated using the model described by Sweeney
et al. [36]. In order to remain consistent with the EEG/MEG
source localization literature, equivalent current dipoles were
used to model the electrical activity of the nerve fibers. The
magnitude waveform of the current dipole was therefore ob-
tained from the first derivative of the transmembrane potential
during the action potential [37]. The waveform was then
propagated from one node of Ranvier to the next at a speed of
approximately 50m/s [36]. The nodes of Ranvier were placed
1mm apart, which is consistent with a 10µm-diameter fiber.
The length of the simulation was 2ms.

Once the location and time course of the current sources had
been determined, the simulated measurements at the electrode
contacts were obtained using the second FEM model described
in the previous section. The reference for the measurements
was the average of the two reference contacts present in the
“matrix” cuff design (see [28]). Noise was then added to each
set of measurements, with the noise standard deviation set to
0%, 10%, 20%, 30%, and 40% of the signal standard deviation.
The signal standard deviation for the purposes of generating
the noise was estimated by computing the standard deviations
of the measurements at each of the 8 contacts in the middle

ring of the cuff, then averaging those values. The resulting
noise standard deviation was used to generate Gaussian white
noise time series for each of the 56 contacts. This noise rep-
resents the remaining contamination after appropriate filtering
and noise reduction measures have been used.

Measurements corresponding to two situations were simu-
lated: a single active fiber, and three active fibers. Each of
the two cases was repeated 100 times, with the positions of
the active fibers within the endoneurium generated randomly
every time. For the case of three active fibers, the waveforms
for all three fibers were identical but a random time shift was
applied. The maximum allowable time shift was a quarter of
the length of the simulation. Given the distance between the
nodes of Ranvier and the length of the nerve model, each fiber
was composed of 50 dipoles, each with its own time course.
The source localization task described in the following sections
was therefore dealing with regions featuring either 50 or 150
dipoles with varying magnitudes.

3) The inverse problem:There are two broad categories
of EEG/MEG source localization methods: equivalent dipole
methods and distributed linear methods. Equivalent dipole
methods assume that the potential measurements can be ex-
plained using a small number of equivalent dipoles, whose
number is seta priori or estimated using the data and whose
location, orientation, and magnitude must be determined using
search algorithms to fit the measurements [38], [39]. In the
peripheral nerve problem, the combination of multiple active
fibers and the distribution of activity along the length of the
fibers make the assumption of a small number of dipoles
very hard to justify. The distributed linear methods, on the
other hand, formulate the problem as the estimation of the
magnitudes of a large number of dipoles whose locations
and orientations are fixed. Electric fields add linearly, so
the relationship between the measurements and the dipole
magnitudes can be expressed as the linear system in Equation
1.

d(n) = Lj (n) + ǫ(n) (1)

Here,d(n) is the Mx1 vector of measurements at instant n,
j (n) is the 3Nx1 vector of current dipole magnitudes at instant
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n, andǫ(n) is additive noise (assumed Gaussian). The Mx3N
matrix L is the leadfield matrix, which relates the potential
measurement at each electrode contact to the existence of
a unit source at each possible location. It is constructed as
described in Section II-A.1. There are three leadfield columns
for each of N mesh elements, corresponding to the three
orthogonal dipole orientations. Note that the system at each
time instant can be considered as independent of the other
time instants because quasistatic conditions hold [40].

The difficulty of recoveringj (n) from d(n) and L comes
from the fact that the problem is underdetermined and ill-
posed. In order to obtain a stable solution, additional con-
straints must be added to the problem. A number of reviews
are available that give an overview of the most commonly used
types of constraints [22], [41]. Here, the method chosen is
the standardized low resolution brain electromagnetic tomog-
raphy (sLORETA) method [10]. In the absence of additional
information about the solution, sLORETA usually outperforms
other instantaneous distributed linear methods, but does this
at the cost of decreased spatial resolution. In other words,
it produces images that are blurred but have well-localized
peaks; this smoothness is imposed on the solution as a
constraint to deal with the ill-posed nature of the problem.
The algorithm has been shown to localize single sources with
zero error in the noiseless case [10]. sLORETA consists of two
steps: first, a regularized minimum-norm least-squares solution
of Equation 1 is obtained; second, that solution is normalized
using the diagonal of the resolution matrix, which provides
information about the bias of the solution for each entry in
j (n). The regularization parameter is chosen here by means of
the cross-validation error function, as suggested by Pascual-
Marqui [10], [42].

Our choice of algorithm is based on three criteria. First, it
should not make the assumption that there are only a small
number of active sources, as was already discussed above.
Second, it should be reasonably fast, in view of possible appli-
cation in a neuroprosthetic system. Lastly, it should not assume
that the source distribution generating the measurements is
stationary over a certain time interval, because outside ofa
controlled experiment there would be no way to ensure that
the set of active pathways is not changing over the observation
period. sLORETA satisfies all three of these requirements.

In order to reduce the number of variables that need to
be solved for in the inverse problem, we can further restrict
the location and orientation of the dipoles. Active fibers can
only be located in the endoneurium, so the perineurium and
epineurium regions are removed from the solution space. The
current dipoles that are used to model the extracellular field
of an action potential are oriented axially along the fiber [40],
so that dipoles in the other two orthogonal directions can be
eliminated from consideration, thereby reducing the number
of variables by two thirds.

4) Spatio-temporal constraint:Keeping in mind that the
basic approach to solving underdetermined inverse problems
is to constrain the solution based on our knowledge of the
problem, we investigate a spatio-temporal constraint based
on the electrophysiology of nerve fibers. Assuming that we
are applying what follows to myelinated fibres, a spatio-

temporal constraint can be implemented based on the formula
in Equation 2.

V (x, t) = V (x − ds, t − ds/v) (2)

V(x,t) is the transmembrane voltage at position x along the
fibre and at time t, ds is the spatial distance separating two
consecutive nodes of Ranvier, and v is the conduction velocity.
ds and v can be estimated from the diameter and type of the
fibre. The formula is simply saying that the activity at a node
is ideally identical to the activity at the previous node ds/v
seconds in the past.

Putting this equation to use assumes that the type (myeli-
nated vs. unmyelinated) and diameter of the fibres at a given
location in the nerve are known. Alternatively, even if no
information about the location of different fibre types is
available, the constraint can be applied if a single type of
fiber is active at a given time, by assuming that the whole
nerve is composed of fibers of that type. In that situation,
before performing the localization, one can identify the nerve
conduction velocity (and thus fiber type) from the multi-
contact cuff electrode using a method such as the one proposed
by Rieger et al. [43].

In order to incorporate this information as a constraint,
temporal coupling must be introduced into the problem. Ide-
ally, the whole spatio-temporal system could be expressed
and solved as a single linear system, by concatenating the
measurement and source vectors for all time instants [44],
[45]. This is shown in Equation 3, which is very similar
to Equation 1, with the exception that the vectorsdc, jc,
and ǫc include the complete information about the system
at all time instants in the observation time window (i.e.
dc = [d(1)Td(2)T...d(n)T]T, with equivalent definitions for
jc andǫc, and n being the total number of time samples).Lc

is a block diagonal matrix, where each block is equal toL.

dc = Lcjc + ǫc (3)

The problem with this approach is that the number of
variables is multiplied by the number of time instants, making
the system intractable for any realistic application. Therefore,
for computational reasons, we restrict ourselves to coupling
two time instants at a time. Specifically, in accordance with
Equation 2, we solve the systems corresponding to the pairs
of time instants (t(1), t(1)+ds/v), (t(2), t(2)+ds/v), etc. ds/v is
rounded to the nearest integer. To couple the solutions of the
two time instants together in the desired manner, a coupled
leadfield and a non-diagonal weight matrix are constructed
as shown in Equation 4. In general, the weight matrix in a
distributed linear method for this type of problem is applied
to the norm of the solution in the minimum-norm least-
squares problem and is used to applya priori constraints to
the solution. The incorporation of a weight matrix into the
sLORETA algorithm is described in the original paper by
Pascual-Marqui [10].

Lc =

[

L 0
0 L

]

Hc =

[

I −A
0 I

]

(4)
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I is the identity matrix corresponding to the number of
variables in a single time instant, and A contains the spatial
element of the constraint. If elements i and j of the solution
vector correspond to locations along the same pathway and
separated by a distance ds, thenAi,j is set to 1. In this way,
each row of A corresponding to a location in a constrained
pathway contains a single entry of value 1.Hc therefore
constrains those values in the solution at time t+ds/v to have
as close a value as possible to the element situated ds lower in
the solution at time t by penalizing differences in these values,
as desired.

In the case of our simulations, the constraint assumed
that the whole nerve was composed of myelinated fibres of
diameter 10µm with nodes of Ranvier spaced 1mm apart and
a conduction velocity of 50m/s. These values are the same as
the ones used to generate the simulated measurements.

B. Evaluation of the results

The characteristic of the solution that is of most interest
to us is the position of the active pathways. For that reason,
we are primarily interested in the position of the sources in
a cross-section of the nerve, rather than in their longitudinal
position. The three-dimensional solution can therefore bepro-
jected onto a two-dimensional cross-section for the purposes
of computing an error metric. This is done by summing the
absolute values of the activity of all the mesh elements with
the same cross-sectional position. The value associated with
each location in the resulting two-dimensional projectionis
therefore a representation of how much activity was spread
along the length of the nerve at that position. This process
implies that a nerve fibre has a straight path with very little
radial deviation along the length of the nerve segment; because
there may in fact be small deviationsin vivo, we stress that
the actual source localization in no way depends on this
assumption. It is simply used to obtain useful metrics to
evaluate the performance of the method in the context of the
simulations, and is justified here because the simulated nerve
fibres were in fact straight.

To further simplify the evaluation of the localization process
and obtain concise metrics, we sum the estimates from all
the time instants of a given trial before performing the two-
dimensional projection. The three-dimensional activity over
the time interval is therefore summarized as a single two-
dimensional source distribution. It is important to clarify
that summing the estimates of all the time instants does not
presuppose stationarity of the underlying sources; it simply
provides an indication of what sources were active at some
point in the time interval.

Lastly, the estimated source locations are obtained by find-
ing the local maxima in the final two-dimensional projection.
These local maxima are used to estimate the localization error,
as well as the number of missed and spurious pathways. The
metrics are computed as follows:

1) The mesh is interpolated onto a regular grid. The local
maxima are detected on this grid by comparing the
activity at each location with the activity at all locations
within 50µm. The peak coordinates are obtained, and the
results mapped back onto the FEM mesh cross-section.

2) Each peak in the estimate is associated with the true
pathway closest to it. A localization error is obtained
for each of the true pathways by computing the peak-
to-peak distance between that pathway and the closest
of the estimated peaks assigned to it. The other peaks
associated with that true pathway, if any, are counted as
spurious peaks.

3) True pathways that do not have any peaks associated
with them in Step 2 are counted as missed pathways.

III. R ESULTS

A. One-pathway case

The mean values over 100 trials of the localization error,
number of spurious pathways, and number of missed path-
ways when a single true pathway is present are shown in
Figure 2. When the idealized leadfield was used with no
constraints, the localization error was relatively independent
of the noise level, with non-monotonic variations between a
minimum of 0.137mm and a maximum of 0.166mm. When the
spatio-temporal constraint was added, similar non-monotonic
variations were observed between a minimum of 0.134mm
and a maximum of 0.182mm. When the correct leadfield
was used, a clear relationship with the noise was observed:
the error increase monotonically from 0.078mm to 0.166mm
without the spatio-temporal constraint, and from 0.081mm to
0.175mm with the constraint. The statistical significance of
this finding was confirmed by the fact that, when testing the
relationship between error and noise against a null hypothesis
of no correlation,p was less than 0.05 only in the cases
where the correct leadfield was used. The difference in results
between the simulations with the idealized leadfield and those
with the correct one is due to the geometry error. In other
words, even when the amount of measurement noise is low,
the localization algorithm must still deal with a large amount
of error if the leadfield is based on an inaccurate model of the
region. The relatively constant error in the idealized leadfield
cases additionally seems to suggest that there is a plateau in
the amount of localization error as the noise increases, at least
for the range of values examined.

Spurious pathways were seen to constitute the biggest ob-
stacle to the applicability of the source localization approach.
The number of spurious pathways increased monotonically
with the noise in all cases (this relationship was statistically
significant in all cases except IL, possibly because the number
of spurious pathways seems to reach a plateau early in that
situation). When the idealized leadfield was used, the metric
varied from 1.05 to 3.24. When the spatio-temporal constraint
was added, the range of values was from 1.14 to 2.51. When
the correct leadfield was used without the constraint, the range
was 0.02 to 2.62, and with the constraint it was 0.06 to 1.74. As
clearly visible in Figure 2, this data reveals that the amount of
information incorporated into the source localization problem
has a direct impact on the number of spurious pathways: the
spatio-temporal constraint led to a marked decrease regardless
of the leadfield used, and the combination of the correct mesh
with the constraint noticeably outperformed all of the other
cases. One-way ANOVA followed by a multiple comparison
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Fig. 2. Localization errors, spurious pathways, and missed pathways for the one-pathway case (n = 100). IL: idealized leadfield; IL-C: idealized leadfield
with spatio-temporal constraint; CL: correct leadfield; CL-C: correct leadfield with spatio-temporal constraint.

test between the four cases, performed at every noise level,
showed statistically significant (p < 0.05) differences between
all pairs except the pair (IL-C, CL). This confirmed the
differences qualitatively visible in Figure 2. The exception
was the 0% noise case, in which the choice of leadfield led
to significant differences but the spatio-temporal constraint did
not. Overall, the presence of the spatio-temporal constraint led
to minor increases in localization error at high noise levels,
but marked reductions in the number of spurious pathways,
which seems to be a worthwhile trade-off. The error increase
was not statistically significant (p > 0.05), and may be due
to the larger number of variables in the coupled problem. No
missed pathways were observed, which is not surprising given
that a single pathway was present in the region.

Figure 3 (panels a), c) and e)) shows an example of a
localization trial. The smoothing effect of sLORETA is clearly
visible, as is the presence of spurious pathways. Note that
the trials shown in this figure (for both the one- and three-
pathways cases) are selected to help the reader visualize
the concepts being discussed; they are not necessarily the
most representative of the method’s performance. For that
information, the reader should rely rather on the metrics
discussed in the text and shown in Figures 2 and 4.

B. Three-pathways case

Panels b), d), and f) of Figure 3 show an example trial for
the three-pathways case. The mean values over 100 trials of
the localization error, number of missed pathways, and number
of spurious pathways when three true pathways are present are
shown in Figure 4. The localization error when the idealized
leadfield was used with no constraints was again relatively
independent of the noise level (p > 0.05 under a null hypoth-
esis of no correlation), varying non-monotonically between

0.152mm to 0.181mm. With the spatio-temporal constraint, the
range was 0.155mm to 0.179mm. The errors when the correct
leadfield was used were once again an increasing function
of the noise (p < 0.05), ranging from 0.083mm to 0.182mm
without the constraint, and from 0.087mm to 0.180mm with
the constraint. These results are very similar to those seenin
the one-pathway case.

The general trends for spurious pathways were also similar
to those in the one-pathway case, including the effects of
the constraints. Although the increase with noise was not
strictly monotonic in all cases, that was nonetheless the trend
(p < 0.05 in all four cases). The number of spurious pathways
when the idealized leadfield was used varied from 0.47 to
1.72 without the constraint, and from 0.64 to 1.15 with the
constraint. When the correct leadfield was used, the range was
from 0.02 to 1.24 without the constraint, and from 0.02 to 0.88
with the constraint.

When multiple true pathways were present, the number of
missed pathways increased dramatically. The general trend
was an overall decrease as the amount of noise increased,
although this proved statistically significant only in the cases
with the correct leadfield. When the idealized leadfield was
used, the number of missed pathways ranged from 0.84 to
0.31 without the constraint, and from 0.84 to 0.58 with the
constraint. When the correct leadfield was used, the range was
from 1.44 to 0.38 without the constraint, and from 1.57 to 0.62
with the constraint.

IV. D ISCUSSION

The localization of active pathways in a peripheral nerve
was approached as an inverse problem of bioelectric source
localization, using simulated measurements from a 56-contact
nerve cuff electrode. This is an ill-posed inverse problem,
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Fig. 3. Figure a) shows the normalized simulated measurements obtained at all 56 contacts (7 rings of 8 contacts) for one of theone-pathway trials. The
noise level is 20%. Figure c) shows the estimated pathways obtained by applying the source localization procedures to themeasurements in a), using the
idealized leadfield combined with the spatio-temporal constraint. Figure e) shows the true location of the pathway for this trial. Figures b), d), and f) show
equivalent data for one of the three-pathways trials. The sharp peaks seen in the estimates are not part of the source localization solution itself, but rather are
the ouput of the peak detection algorihtm, superimposed on thesolution. Likewise, the nerve outlines on the floors of figures c)-f) are not part of the source
localization, but have been added to help the reader visualize the location of the pathways within the nerve (idealized anatomy for the estimated pathways in
Figures c) and d), and realistic anatomy for the true pathwaysin Figures e) and f)).

and problems of this class can only be solved satisfactorilyif
sufficient appropriate constraints are imposed on the solution.
We therefore compared the performance of the approach using
idealized and correct models of the nerve geometry, and in
the presence of a spatio-temporal constraint based on the
electrophysiology of myelinated nerve fibres. As expected,
the overall performance improved as more information was
incorporated. Nonetheless, most of the simulated cases had
mean localization errors in the 150µm to 180µm range (in a
720µm-diameter endoneurium, with 10µm-diameter individual
fibres), and unacceptably high numbers of spurious pathways.
Only at very low noise levels and with accurate constraints did
the performance reach levels that would make the approach
reliably usable in practice. Even in those situations, however,
the number of missed pathways was high, due partly to the
low resolution of the sLORETA method. Note that the decrease
in the number of missed pathways as noise increased in the

three-pathways case is related to the way that the metrics were
computed. Recall that each true pathway is associated with
the closest estimated pathway. Therefore, if there are several
spurious estimated pathways distributed across the region, then
there is a greater chance that some of them will be associated
with a true pathway and therefore reduce the number of missed
pathways. This explains why the number of missed pathways
decreases as the number of spurious pathways increases, and
furthermore why cases that have the best performance in the
other metrics (e.g. the combination of the correct leadfieldand
the spatio-temporal constraint) have more missed pathways. In
light of this limitation of our metrics, the most revealing values
for the number of missed pathways are the ones corresponding
to cases with very few spurious pathways. For instance, the
simulations using the correct leadfield with the constraintat
0% and 10% noise have close to 0 spurious pathways. In
those cases, the number of missed pathways is approximately
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Fig. 4. Localization errors, spurious pathways, and missed pathways for the three-pathways case (n = 100). IL: idealizedleadfield; IL-C: idealized leadfield
with spatio-temporal constraint; CL: correct leadfield; CL-C: correct leadfield with spatio-temporal constraint.

1.5, or half the number of true pathways. This is a very
high proportion, but it is not entirely unexpected. Recall that
sLORETA imposes smoothness on the solution, and therefore
is not capable of reliably distinguishing closely spaced sources.
Therefore, if two pathways are close to one another, they will
be lumped together in the estimate, thereby producing missed
pathways. In addition, our determination of the location ofthe
estimated pathways is based on local maxima. Upon visual
inspection, however, it becomes clear that pathways do not
always produce local maxima, but may significantly affect the
shape of the solution in other ways (for example by producing
elongated ridges). There is therefore a need for a better method
of identifying the estimated pathways, but given the variability
of shapes and magnitudes that may occur this is not a trivial
problem and is outside the scope of this paper.

Some remarks are in order regarding the way that in-
formation was incorporated into the problem in this study.
The simulations that use the correct leadfield and no noise
should be considered a mostly theoretical situation usefulfor
examining the effects of adding information, because such
an exact correspondence will never be found in practice,
even if detailed anatomical information is available. On the
other hand, when noise is incorporated into the simulations,
it can be interpreted as a combination of measurement noise
and geometry noise (i.e. mismatch between the leadfield and
reality), such that the simulations with high noise may be more
indicative of the expected performance in practical situations
where anatomical information is available. As for the spatio-
temporal constraint, it has already been mentioned that, inthe
absence of anatomical information about the layout of fibre
types in the nerve, it is useful only if a single type of fibre
dominates the nerve’s activity at a given time. Although it is
feasible to ascertain in practice whether or not this assumption

is reasonable [43], it does nonetheless restrict the range of
practical situations in which the constraint would be usable.
It is therefore also used in this paper as much as a theoretical
tool to examine the effects of constraints as a suggestion for a
practical technique. Overall, there is no doubt that more work
is required to develop constraints that are both useful from
the point of view of the inverse problem and whose practical
implementation is realistic.

More generally, if the peripheral nerve source localization
approach is ever to be usable as part of a neuroprosthetic sys-
tem, several advancements are needed. First, noise reduction is
essential, and could take the form of improved instrumentation,
better isolation of external signals at the cuff level, or neuro-
modulation techniques to boost the amplitude of the recorded
nerve signal [46]. Second, methods should be investigated
to obtain precise images of a nerve’s anatomyin vivo. For
example, an adaptation of electrical impedance tomography
techniques [47] to peripheral nerves could be considered, and
studies have already shown that fascicles within a nerve canbe
imaged using ultrasound [48]. It is interesting to note, however,
that in our simulations the performance using only the spatio-
temporal constraint with the idealized leadfield (IL-C) was
not very far from that using only the correct leadfield without
the spatio-temporal constraint (CL), at least for cases with
non-zero noise. This raises the possibility that if sufficient
physiological and contextual information could be provided
as constraints, and the noise brought down to a manageable
level, then an idealized geometry could perhaps still be used.
This would be analogous to using a three-sphere head model
in the EEG/MEG source localization problem, as opposed to a
patient-specific MRI-based anatomical model. Another cause
for cautious optimism is that the performance for the very
idealized case of noiseless measurements and full constraints
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approached acceptable levels, which implies that the very
large number of dipoles in the region (50 per pathway in
this study) may not be an insurmountable obstacle in itself
to pathway localization. Importantly, although this studywas
written with an eye to applying the method to neuroprosthetic
systems, the potential for neural system identification (inthis
case identifying the peripheral control signals involved in
specific tasks) is also very interesting, and has a differentset
of restrictions. In particular, in a context where repeatedtrials
and off-line processing options are available, the noise could
be significantly reduced by trial averaging and a wider rangeof
algorithms explored, since computation time would no longer
be as much of an issue. It may therefore be worthwhile to
keep exploring the source localization approach in this context.
For neuroprosthetic applications, sub-fascicular resolutions do
not appear realistic on the short term, and the usefulness of
the method as a framework for determining the activation of
combinations of several fascicles will be contingent on future
developments like the ones discussed above (particularly if
numerous small fascicles are involved, as is more likely to be
the case in humans).

The present study aimed to estimate the overall viability
of the source localization approach. There are various topics
that were not discussed in detail here but would become very
relevant if the performance was improved enough to make
the approach usable. First, it is important to keep in mind
the very high temporal resolution of the method, which is not
reflected in the metrics used in this study. For each dipole
location, the algorithm produces a complete activation time
series, making it possible to study transmembrane current
waveforms and firing frequencies for precise locations in
the nerve. Second, the influence of the number of contacts
on the performance would need to be explored. We limited
ourselves here to using a model of an existing electrode, but
as manufacturing techniques improve so will the number of
contacts that can be placed on a cuff, and this will undoubtedly
have an influence on the source localization performance.
There may also be a plateau to the benefits of increasing the
number of contacts, such that the optimal number should be
sought. Third, the number of pathways that the method can
accurately localize in a given situation should be determined.
The use of three pathways in this study was motivated by
the need to study a simple multi-pathway case, rather than by
physiological considerations. That said, the term “pathway”
should not necessarily be equated with a single nerve fibre,
particularly given the limited resolution and the coarseness
of the mesh. Multiple closely spaced nerve fibres that have
a functional relationship and a roughly synchronous firing
pattern (e.g. compound action potential) may therefore be
considered a single pathway, as could a very small fascicle.
Similarly, the currents generated by a few isolated nerve fibres
that fire at the same time as a larger coordinated group
of fibres elsewhere in the nerve may be drowned out and
confused with noise; in that case, they may be missed by the
algorithm, but may not significantly hamper the localization
of the “main” pathway. The last issue that deserves to be
discussed is that of computation time. Our choice of algorithm
was partially based on its speed. On a 2.33GHz dual-processor

workstation, localization for a single time instant using the
idealized leadfield and no constraints took approximately
1 second. When using the correct leadfield or the spatio-
temporal coupling, the computation time increased roughly
proportionally to the number of variables to be solved for.
While these computation times are not yet suitable for real-
time implementation, it is nonetheless a realistic target as
computational speed continues to increase and more efficient
implementations of the algorithm are explored. As mentioned
earlier, in situations where speed is not an issue, slower
algorithms could be explored, for example ones based on Lp
norms (e.g. [25]).
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