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Abstract—The task of discriminating the neural pathways
responsible for the activity recorded using a multi-contat nerve
cuff electrode has recently been approached as an inverse qir-
lem of source localization, similar to EEG source localizabn.
A major drawback of this method is that it requires a model
of the nerve, and that the localization performance is highy
dependent on the accuracy of this model. Using recordings ém
a 56-contact “matrix” cuff electrode placed on a rat sciatic
nerve, we investigated a method that eliminates the need foa
model, and uses instead an “experimental” leadfield constreted
from a training set of experimental recordings. The resultng
pathway-identification task is solved using an inverse prolem
framework. The experimental leadfield approach was able to
identify the correct branch in cases in which a single fascle

was active with a success rate of 94.2%, but was not able

to reliably identify combinations of fascicles. Neverthetss, the
proposed methodology provides a framework for the study of
multi-pathway discrimination, within which methods to imp rove
performance can be investigated. Specifically, the influerc of

R. Popovisenior Member, IEEE

pathways within a nerve, and therefore allowing more so-
phisticated control of the neuroprosthesis. For exampje, b
monitoring specific pathways, sensory activity correspogd

to a particular location could be decoded and used as part
of closed-loop control algorithms for functional elecsiic
stimulation (FES) systems aiming to restore movement in
individuals with spinal cord injury or stroke (e.g. [1]-)3]
Alternatively, in the case of amputations, efferent comdsan

to specific muscles could be extracted proximally to therinju
and used to control a prosthetic limb [4], [5].

A number of different peripheral nerve interfaces have been
proposed. Longitudinally implanted intrafascicular ¢éledes
(LIFE) [6], [7] have very high spatial resolution, but are
not able to provide coverage of the whole nerve. Intraneural
recordings obtained using micro-electrode arrays (MEA) [8
combine spatially specific recordings with good coverage of

nerve anatomy and electrode design should be examined, andthe nerve, and so are a potentially attractive option, bueha

regularization approaches better suited to this novel invese
problem should be sought.

Index Terms—Pathway discrimination, experimental leadfield,
multi-contact cuff electrode, nerve cuff selectivity, peipheral
nerve interface, rat sciatic nerve.

I. INTRODUCTION

Neuroprosthesis is a system in which an artificial devi

several drawbacks. MEAs may cause damage during chronic
implantation, are difficult to use for small nerves (due to
manufacturing considerations), and the recording stglairer

time is poor [9]. Selective recording has also been attethpte
with nerve cuff electrodes, using methods based either an co
duction velocity [10]-[12], or on the spatial variationstime
extraneural fields [13]-[20]. This second category of mdtho
&ither proposed approaches that were not easily gendrigliza

interacts directly with the nervous system in order tgeyond two fascicles, or quantified the selectivity of thé cu

replace or enhance damaged function. Our focus here is \¥fihout proposing an approach to identify multiple sources
implantable neuroprostheses that interact with the perigh from the recordings. Nonetheless, the novel manufacturing

nervous system: these systems can be used to help resf3pghods and nerve cuff designs of recent years [17], [21]
function in subjects with spinal cord injuries, strokesdanhave resulted in nerve cuffs that provide greater amounts of

amputations. One current limitation of this type of tectogyl

information, and have opened the door to new processing

is that there is a need for more selective neural interfacdgProaches.

capable of discriminating the electrical activity of diféat
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In order to generalize previous nerve cuff-based apprsache
to selective recording and best take advantage of multiaobn
electrode designs, we have recently explored the idea of
using a source localization approach adapted from the field
of EEG source localization [22], [23]. Simulations and ieuit
experiments have indicated that in a 1 mm nerve surrounded
by a “matrix” design multi-contact spiral nerve cuff [24jhe
of the crucial conditions for performance to be acceptabte i
have an accurate model of the nerve [23], [25]. The impodanc
of the model stems from the fact that the source configuration
can only be accurately reconstructed if we have a reasonably
good estimate of how a source at a given location would affect
the measurements.

Wodlinger et al. have explored a related approach and
shown recently that, in the case of a flat interface nerve
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cuff electrode placed on a large nerve, major fascicles c | |
be successfully identified using a beamforming approach w R —
knowledge only of the electrode geometry [26], [27]. Thes HMMMMW“HHHW
results are promising and suggest that peripheral nervesoL ‘ |
localization approaches are worth pursuing further, h@vév - B
is unclear what resolution could be achievadvivo without ’
a more acurate model of the nerve’s anatomy, or in the ce
of combinations of several sources. The sensitivity of seur
localization approaches to model accuracy therefore mesna
of interest, particularly because current technology doas
allow us to obtain an accurate three-dimensional model of ‘
particular nerven vivo. ‘
In the present study, we investigate a method that aims
circumvent these issues by eliminating the dependency on a
model. Instead, a training set of data is collected experime/d. 1. Planar schematic of the malrix nerve cuff, 1 mm in din when
tally and then used as the empirical basis for the interpoeta roted. Imensions are in mlmeters.
of new data, while still remaining within an inverse problem
framework similar to that used in source localization. The
motivation for using such a framework is that it provides the 2) Recording methodsA “matrix” design polyimide spiral

means to deal both with combinations of multiple sources aR§rve cuff electrode [24] was used to record the nerve agtivi
with uncertainty in the measurements. during the experiments. The matrix cuff was 23 mm long,

1 mm in diameter and contained 7 rings of 8 contacts, for
a total of 56 contacts. The cuff, a diagram of which is
shown in Figure 1, was manufactured by placing a 300 nm
A. Data collection platinum film between two layers of Pyralin 2611 polyimide.

]_) Surgica| procedure:Five male Long-Evans rats (0|dThe resulting planar electrode was curled and placed in an
breeders, 640 g to 850 g) (Charles River Laboratories In@luminum block, then tempered so as to remove mechanical
Wilmington, MA, USA) were used. The rats were acclimatize&tress and ensure that the structure maintains a curlee shap
for one week prior to use in the experiment, with food antom temperature. Lastly, the electrode contacts wereedoat
water providedd libitumand a 12 hour lights on/off cycle. All With platinum black. The interconnection technology foe th
animal care and use procedures conformed to those outlifi&yice is described in [28]. The cuff was placed on the
by the Canadian Council on Animal Care (CCAC). sciatic nerve, just proximal to its division into its perahe

All animals were anesthetized with a single bolus injectioand tibial branches (Figure 2(a)). In order to stimulate the
of pentobarbital (60 mg/kg, intraperitoneal), and theivdo Nnerve branches, three tripolar polyimide spiral nerve <&
backs and legs shaved and treated with povidone-iodinenwHgm long and 1 mm in diameter) were placed around the
an adequate depth of anesthesia was attained (loss of torfiBil, sural, and common peroneal nerves. The center ring
reflex and loss of Sharp pain Sensation), the animals Wé}%the Stimulating electrodes contained 8 contacts thaewer
positioned prone on the operating table. shorted together to create traditional tripole cuffs. Aesolatic

An oblique incision was centered over the posterior (dyrs&f the cuff placements is shown in Figure 2(b). The rat sciati
aspect of the hip. The incision was extended proximally feerve is known to branch progressively into four fascicles,
the midline and distally parallel with the fibers of the gluge which then become the tibial, peroneal, and sural nerves and
maximus to the posterior margin of the greater trochantee. Tthe much smaller cutaneous branch (not used here) [29].
incision was then directed distally, parallel with the femlo This branching pattern was verified by histological analysi
shaft to the posterior fossa of the knee. The deep fascia WwA§matoxylin and eosin staining at 5 mm intervals along the
exposed and divided in line with the skin incision. By bluniength of the recording cuff). Therefore, by stimulatinge th
dissection, the gluteus maximus was split in line with itefigp tibial, peroneal, and sural nerves nerves distally, we catrol
and retracted to expose the sciatic nerve and short exterfyBich of the fascicles is active at the level of the recording
rotator muscles. Care was taken not to disturb the superfdfff. This one-to-one correspondence between fasciclels an
gluteal vessels in the proximal part of the exposure. distal nerves does not always hold in the general case, but is

The sciatic nerve was exposed as far proximally as possi¥lid for the purpose of this study.
to allow adequate exposure for application of the recordingThe measurements from the recording cuff were acquired
cuff. The sciatic nerve was then followed distally and threesing a SynAmps2 64-channel amplifier (Neuroscan Inc.,
branches were identified: the sural nerve, peroneal nemnek, &lerndon, VA, USA), with a sampling rate of 20 kHz and
tibial nerve. The soft tissue surrounding each of theseasena gain of 2010. The signals were band-pass filtered between
was carefully blunt dissected to allow a stimulating cufb® 300 Hz and 3 kHz. The reference for the recordings was a
applied to each nerve. The three stimulating cuffs wereiegpl contact included in the matrix cuff design and located just
first, followed by the recording cuff on the sciatic nervegseoutside the cuff (Figure 1). A needle electrode in the calé wa
details in the next section). used as the ground.

L LLLLELL L]

Il. METHODS
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Fig. 3. Recordings of all 56 contacts for one trial in Rat 1,levtthe tibial

branch is being stimulated. The left plot show the raw dataprded using
a point outside the cuff as the reference (see text). The plgh shows the
same data after conversion to a common average referenedin€s in bold
in both plots correspond to the recordings for one contathénmiddle ring
of the cuff, and illustrate the reduction of the stimulatiarefact.

Sciatic Nerve

Recording cuff the bioelectric activity within a region (e.g. head, torso,
or nerve) is estimated using measurements obtained on the
boundary of that region. Solving the inverse problem rezgiir
a solution to the forward problem, which predicts how a seurc
at any given location will affect the measurements at the
boundary. This information is encoded in a matrix known as
the leadfield. The relationship between the bioelectriacesi
and the measurements can be expressed as shown in Equation
1, whered is an Mx1 vector containing the recorded data from
ceroncaNerve Sural Nerve the M electrodes contactg,is an Nx1 vector whose entries
Tibial Nerve represent the magnitudes of the current dipoles distribute
throughout the region under consideration, &nigs the MxN
leadfield matrix whose entry (i,j) represents the influentca o
(0) unit current at dipole j on the potential recorded at elet#ro

Fig. 2. (a) 56-contact nerve cuff placed on the sciatic ngost proximally to 1= € IS an Mx1 vector of additive noise. M is typically much

the branching into the tibial and peroneal nerves. (b) Setiemepresentation smaller than N, making the problem ill-posed.
of the position of the stimulating and recording nerve cufist exactly to
scale)

Stimulating cuffs

d=Lj+e 1)

The source localization problem is then to recovéased

The tibial, peroneal, and sural nerves were stimulated fitgh the measurements and the estimate.ofarious algorithms
individually, then in every possible combination. The stler  have been proposed to solve this problem, corresponding to
tion pulses were generated using Compex Motion stimulat{gferent ways to choose one of the infinite number of sohgio
(Compex SA, Switzerland), and had estimated durations®f 2yased ona priori criteria of what properties the solution
s and amplitudes in the 0.7 to 3.8 mA range approximatedyould have. Reviews are available for example in [30], [31]
(see Discussion section). These pulses were able to eliaf| || cases, the solution is dependent lonso an essential
produce action potentials in the nerve, as indicated by mus@omponent for any of these methods is to have an accurate
twitches. 100 trials were conducted for each fascicle, at|@ydfield.
frequency of 2 Hz. A stimulation artefact was present beeaus |n EEG source localization, the leadfield is constructed
the amplifiers were not blanked during the stimulation due fysed on a finite-element or boundary-element model of the
equipment restrictions. The stimulation pulses did notlape head, which can incorporate patient-specific detail olethin
with the neural signal, and the amplifiers did not saturate, bxg, example via MRI [31]. In the peripheral nerve case,
they were susceptible to an impulse artefact with a time cog- finite-element model would be required because of the
stant of approximately 0.5 ms and thus overlapping with thgisotropic conductivity of the nerve [23]. Due to the diiy
signal of interest. To compensate for this, the measuresnegt obtaining appropriate nerve models, the method invatsy
were converted to a common-average reference: the timessefgre is founded on the desire to eliminate the need for a model
from all channels were averaged together, and the resultié\gtirew_ Nonetheless, in order to solve the inverse proble
average was subtracted from each of the time series, therghy oti|| require some way of obtaining a forward problem
helping to eliminate elements that were common to all s§nalg|ytion. In the absence of a model, we rely instead on a

(Figure 3). collection of experimentally-obtained measurements.aBse
3) Inverse problem and construction of the leadfield: it is not feasible to experimentally isolate each possible
Bioelectric source localization is an inverse problem irickih location of a dipolar source in the nerve, we focus instead
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on whole fascicles. The trade-off for eliminating the need f
a model is therefore to impose a stricter limitation on th
resolution. The task becomes one of pathway discriminatic
rather than geometric localization. Note that the methoglsdc
not assume that each stimulated pathway is an anatomici
distinct fascicle, only that the activity of each pathway i
located at a different position in the cross-section of theve.
Therefore, from here on we will use the term “pathway” rathe
than “fascicle”, even though in the case of the rat sciativee
the stimulation of each distal nerve results in the actratf

a separate fascicle at the level of the recording cuff.

We will use the term “experimental leadfield” to refer to ¢
collection of observed measurement vectors that is buittgus
a training set and will be used to classify future observetio
This leadfield is a matrix in which each column is a 56-eleme
vector corresponding to the measurements obtained from
recording cuff at a given instant. The goal is to constru
a set of such vectors that are sufficiently representative
the activity produced by each stimulated nerve to be at
to correctly identify future recordings by solving the inge
problem. Each column in the leadfield constructed in this wi
thus corresponds to an instantaneous spatial patternioityct

produced by an entire stimulated pathway. Each pathway waly. 4.

Training set of single-pathway matrix cuff recordings

n Pathway 1 trials
(total of n1, samples)

n Pathway 2 trials
(total of n2, samples)

n Pathway 3 trials
(total of n3, samples)

.

.

'

Pathway 1 training
set: n1, 56x1 vectors

Pathway 2 training
set: n2, 56x1 vectors

Pathway 3 training
set: n3, 56x1 vectors

v

v

v

Identify repeated
vectors and replace
group with mean of

occurrences: nl
remaining vectors.

Identify repeated
vectors and replace
group with mean of

occurrences: n2
remaining vectors.

Identify repeated
vectors and replace
group with mean of

occurrences: n3
remaining vectors.

v

v

¥

Pathway 1 portion of
experimental leadfield

Pathway 2 portion of
experimental leadfield

Pathway 3 portion of
experimental leadfield

(56xn1) (56xn2) (56xn3)

| |

v v
Experimental leadfield
(56x(n1+n2+n3))

Map between leadfield
columns and pathways

Flowchart illustrating the main steps of the experital leadfield

be associated with several vectors, because differergrpatt construction process.

of activity will be produced as a compound action potential

(CAP) travels in that pathway along the length of the reaugdi

cuff. The goal of the proposed method is therefore to be able

to reconstruct the activity inside the nerve at a partictitae
instant. In this way, if sufficiently good spatial discrimation

can be achieved, it will be possible as a second step to
reconstruct the time course of the activity. In the present

study, however, we focus strictly on the spatial discrirtiova

Because each pathway is associated with multiple patterns,

corresponding to different longitudinal positions of thAR;

the method does not assume that the geometry of the branche®

is constant along the length of the recording cuff.

The experimental leadfield is constructed using a training

set that includes only observations of single-pathwayiyti

because the system should be able to identify combinatibns o
fascicles based only on its knowledge of the single-pathway
base cases. The process of constructing the experimental
leadfield is as follows. The main steps are summarized in

Figure 4.
1) Removal of bad channelBi each trial, if the signal from

a channel of the recording cuff has excessive variance
compared to the other channels (more than 4 standard
deviations away from the mean of the variances among
all channels) or very small amplitude (amplitude range
less than 0.1% of the greatest range among all channels),
it is marked as a bad channel, and not used in the
discrimination task. This removal is performed before
converting the remaining channels to a common average
reference.

2) Form training and testing setsThe trials are divided
into a training set and a testing set, for each of the seven
possible combinations of pathways (using the acronyms
T, P, and S for the cases where the tibial, peroneal,
and sural nerves are stimulated, respectively, the seven

combinations are T, P, S, TP, TS, PS, and TPS). In the
case of the multi-pathway combinations, all trials belong
to the testing set. In each single-pathway case, the trials
are divided into 5 groups, and the performance will be
measured using 5-fold cross-validation. Accordingly, the
multi-pathway performance will be evaluated 5 times,
using a different training set each time but always the
same testing set (i.e., all multi-pathway trials).

Identify distinct patternsThe training set of each single-
pathway case is examined in order to identify the set of
distinct measurement vectors that occur within it. Each
new vector must be examined against all the previously
seen vectors in order to determine whether it is a new
pattern or one that has already been recorded. Ideally,
each trial should produce exactly the same activity, so
that a small number of patterns (corresponding to the
different positions of the CAP along the recording cuff)
should occur many times. In practice, this may not be
the case, due to noise and the slight movement of the
recording cuff.

For each trial, the measurement vectors used are from
a time interval delimited by the peaks of the action
potential recordings at the first and last contacts (ex-
cluding bad channels), plus 0.1 ms before and after this
interval. A collection of vectors is built using these time
instants from all the training set trials corresponding to
a given stimulated nerve. From this collection of vectors
we identify recurring patterns as follows.

a) Each vector is normalized with respect to its entry
with the largest absolute value.

b) Each new vector is compared to all previously
observed ones. A new vectog is deemed to be
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the same as an existing vectarif the condition in assign different weights to the variables. Here, we use the
Equation 2 holds true. The value of 0.3 was chawveighted minimum-norm method (WMN) [30], in whicH

sen empirically as a means to obtain meaningfgimply compensates for the different norms of the leadfield
groupings that allow for some variation in the incolumns, as shown in Equation 5.

stances of a given pattern, while still distinguishing

patterns that genuinely reflect different sources of { Hi;i = Lf_..M,iLLMi ®)
activity. Hij = 0,1 7& i
The appeal of WMN in this situation stems from its lack
o1 = val[y < 0.3[[va]]; (2)  of geometrical assumptions. Several source localizatigo-a

c) If a vector has not been observed before, it is add8{ims rely on the fact that each variable corresponds to a
to the set of distinct patterns. If the current vectolr_ocat'on in space, and that the activity at nearby locatisns

corresponds to an already observed pattern thépﬁely to be related [34], whereas in our case the variables
for the purpose of future comparisons, each pattepr? not have this kind of geometrical relationships. It isoals

is represented by the mean of all its occurrence@pparent that a typical solution should consist of only a

- . small number of non-zero variables. Indeed, a CAP in a

4) Eliminate unnecessary variable®nce all vectors have . ; .
. iven pathway should ideally correspond to a single column

been examined, any vector that occurred only once . . L

. e of the experimental leadfield. Even considering a complex
deemed not to be useful for identifying future observa- T . .
. X . source distribution involving several active pathways, tibtal
tions and therefore is removed, in order to produce'a . S : I
number of variable will still be fairly small. Accordinglyt, is

leadfield representing fewer, more meaningful variables, .
) N - réasonable to choose an inverse problem method that preduce
5) Form experimental leadfieldThe remaining vectors

. sparse solutions. We choose for this purpose to use FOCUSS
are gathered to form the columns of the experimen ; s . .

4 ! . . . |35], using as the initial estimate the WMN estimate. FOCUSS
leadfield. The leadfield contains the vectors identifi

. IS an iterative application of the WMN method, where the
for all of the single-pathway cases, but we keep track Ot . . . . . :
. . weight matrixH at each step is a diagonal matrix whose entries
which columns correspond to which pathway.

. o are based on the source estimates from the previous iteratio
_4) Identification of pathway combination®nce the lead- |, this way, locations that were found to have significant
field has been constructed according to the procedure in gt in one iteration are favoured in the next iteration

previous section, two situations can arise: the problem CaQ he number of iterations increases, the activity becomes
be either underdetermined or overdetermined. The far MQIg,centrated in a small number of locations, and tends to
likely of the two, and the one dealt with here, is that e g e|sewhere. The process stops when the solution is no
an underdetermined problem: the nymber of measurementﬁ)ﬁger changing significantly from one iteration to the next
much smaller than the number of different patterns observed it the number of nonzero elements in the solution starts to
so that the leadfield has more columns than rows. This i ease. Like WMN, we regularize the FOCUSS algorithm
the same type of situation that typically arises when usinnging Tikhonov regularization and the L-curve method.
model-based Ieadfielq. Many qf the principles needed in thats) Evaluation of the resultsThe columns of the experi-
context to solve an ill-posed inverse problem can therefope, o) jeadfield correspond to instantaneous patternstiof ac
be applied here as well, and algorithms borrowed from EE(y Therefore, the pathway discrimination task is carriad
source localization can still be used. Here, we use the cammg o5ch, time instant by solving the inverse problem. However
approach known as Tikhonov regularization [32], which bal, symmarize the performance of the method, it is beneficial
ances two objective: minimizing the residual, and minimigi +, jevelop a more concise metric reflecting the activity over
the norm of the solution, as expressed in Equation 3. Th&, coyrse of an entire trial. For this purpose, a set of three
corresponding solution then takes the form shown in Eqoatig,;,es between 0 and 1 was computed, termed “activation

4. indices”, describing the relative estimated activatiofish®
R ) 05 2 12 three pathways during an entire trial. In what follows, the
J= argmjm{HCe (Lj — d)[I* + AIHj[7} (3)  estimate vector for a given time instant is denojedthe set
of variables corresponding to pathways denoteds, and is
j=HH)'LYLHHE) 'Lt + \C] 1d (4) of sizen;, there aren, time instants in a given trial, and the
) 3x1 vector of activation indices is denoted Ay denotes a
d andL are as described in Equation 1.is the vector npon-normalized version afl used as an intermediate step in
of estimated source activations, each “source” in this cagg computations. The activation indices are then compased
corresponding to a given spatial pattern of potentialsiobth shown in Equations 6 through 8.
from the training setC. is the MxM noise covariance matrix,
here assumed to be the identity matrixis the regularization 3|3 _ Jt 6)
parameter, which is used to balance the accuracy of the 1o (manang) 6 g
estimate and the simplicity of the solution. This paraméter e
chosen using the L-curve method [33], which relies on finding Z (M)
the “corner” on a plot of the norm of the residual versus the kCs; s
norm of the solution. LastlyH is an NxN matrix used to 0 = N 7
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A= ‘L‘ g) shown in Figure 7. As indicated on the figure, our initial

[ Aoll oo threshold choice of 0.2 corresponds to the corner of theecurv

I1l. RESULTS

When the experimental leadfield process described in theW

Methods section was applied to the sciatic nerve recorgdings '€ mvestlg_ated a novel appro_ach for p_athway_ discrim-
%atlon in peripheral nerves, inspired by bioelectric seur

the number of columns in the 25 resulting leadfields (5-fol - . . ; .
cross-validation in each of 5 rats) ranged from 176 to 384.!003“23“?2 but dd;es,lgneéj 0 %\I/md th?t tmEIhgdtsh Se?r?ﬁ o |
Figure 5 shows the mean of the three activity estimates floy mode -dase bl orwar prof_ e_tm SIO u |ont. ad Tr aé]glsto v
each pathway combination and each rat. These means are ta{ Sr{o_rwar problem using a finite-element modet, we built an
on the agglomeration of the results in all 5 testing sets. Th perlm_ental leadfield using recprdmgs corespondingitthe
figure reveals that in the single-pathway cases the algnriti? the single-pathway cases of interest. Our goal was then 1o

was successful in identifying the stimulated pathway asdy fusz thlslt_lea?::eld o |d<_ent|f)|/ active pathwayg,”l]n both smale
the most active. Activity estimates of the other pathway:ar—:we""n mulli-pathway previously unseen cases. 1he approash wa

in most cases small, but not insignificant. As for the multf?v"’llu"’mEd on 56-channel recordings from a 1 mm-diameter

pathway cases, the algorithm was less successful in igtengif spiral_cuff_placed on a rat sciatic nerve. The rea(_jer should
the active pathways. Although a few cases were close to be}ﬁ P in mind that the geometry. of the cufi, the size 9f the
accurate (e.g. Rat 1, tibial + peroneal and tibial + sura N Vﬁ and the IanyLrJ]t of thhe faszples_ may .aII have an impact
inactive pathway activities estimates were still high, and the success of the pathway discrimination.
the whole the method was not reliable.

Figure 5 gives a useful overview of the algorithm’s abiliby t A. Technical issues

assess the activity of the different pathways. It would &80  The intended stimulation parameters consisted of.4@
useful to know how often the algorithm can correctly identif A puises, 2 mA being comfortably higher than the thresholds
the exact combination of active pathways. In order to measygnorted in the literature for pulses of this duration [13F]-
this aspect of the performance, the activity estimates etewb [3g). |n practice, however, the parameters were somewat di
above were thresholded at 0.2. A pathway is deemed actjggent due to technical difficulties with the stimulatorsading
if it is above this threshold, and inactive otherwise. Wenth&, the values described in the Methods section. As the pulses
computed the percentage of trials in which the combinatiqfiere still able to produce CAPs, this issue has very limited
of active pathways is exactly accurate, for each pathw@ypact on our results. Indeed, knowledge of the specific fiber
combination and rat. The success rates were averaged aciggg itment obtained is not crucial to our study as long as it
the 5 testing sets, and the results are shown in Figure 6. s consistent between trials, because all that is requireiat
Figure 6 is in accordance with Figure 5 in showing thahe fascicles produce distinct spatial patterns. The sbissue
the algorithm was more successful at correctly identifyingas that the large number of channels of the recording cuff
single-pathway cases than multiple-pathway ones. The M&3Bated the need for a large and heavy connector that had to be
success rate over the 15 single-pathway cases was 68.3%, Wi|q in place manually in several experiments, such thaethe
a minimum of 19.4% and a maximum of 95%. On the othghay have been some slight movement of the recording cuff
hand, the mean success rate over the 20 multiple-pathvgiéer the course of a given experiment. Although both the cuff
cases was 25.3%, with a minimum of 1.3% and a maximumoyement and the presence of a stimulation artefact affiect t
of 54.6%. Note that by consulting Figure 5, we can see thgfality of the recordings, similar issues are to be expeited
single-pathway cases with low performance in Figure 6 We{gq in the form of slight changes in cuff postion during limb
likely due to inactive pathway erroneously being identifiefoyements and the presence of nearby bioelectric sourchs su
as active, rather than the correct active pathway beingemiiss,ys EMG. Therefore, although the experimental issues that we
The proportions of false positives and false negatives ofs® oncountered may have affected our results quantitatitiedy,
depends on the threshold that we use. The use of 0.2 wasygMot invalidate any of our qualitative conclusions regagd

attempt to balance the need of the single- and multi-pathwgye performance of an experimental leadfield in practice.
cases. If we focus only on single-pathway cases, it is clear

from Figure 5 that the number of false positives in the single ) ) ]
pathway cases could be reduced by raising the threshold.BnAdvantages and disadvantages of an experimental leddfiel
that case, we can simply select the pathway with the high&&mpared to a model-based leadfield

activation, which is equivalent to setting the thresholdito = An important advantage of the experimental leadfield is that
since the activation indices are normalized to the highést the number of variables to solve for in the inverse problem is
the three values. This is illustrated in the second set of mar much smaller than in the model-based approach. In the presen
Figure 6, which is obtained in the same way as first set of batsidy, the number of columns in the experimental leadfields
except with the threshold set to 1 instead of 0.2. This changleows that there was variability in the measurements: given
of threshold raises the mean success rate of the singlespaththe 20 kHz sampling rate, the 23 mm length of the recording
cases to 94.2%, and lowers that of the multiple-pathwayscasriff, and the conduction velocities of large fibers (36 to 120
to 0%. The complete relationship between the multi-pathway/s [39]), a CAP dominated by large fiber activity would take
and single-pathway success rates as the threshold varieapproximately 4 to 13 time samples to propagate through the

IV. DISCUSSION
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Fig. 5. Means of the activity indices for the three pathwdgs,each rat and pathway combination. The abbreviationsaartollows: Tibial (T), Peroneal
(P), Sural (S), Tibial and Peroneal (TP), Tibial and Surab)TPeroneal and Sural (PS), and Tibial, Peroneal, and §P&). In each case, the nerves being
stimulated are outlined in red.
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Fig. 6. Success rate for identifying the exact combinatibaative pathways, for each rat and pathway combination. Stardard deviation is based on the
5 repetitions of the cross-validation process. The abhtievis are the same as in Figure 5. The threshold for a pattavag considered active is 0.2 in the
first set of bars, and 1 in the second set of bars.

cuff. In the ideal situation, therefore, the three pathwagsld model and how fine a mesh is used.

result in fewer than 40 columns in the experimental leadfield aonother crucial difference between the experimental and
(creating a overdetermined problem and calling for diffiere \ogel-based leadfield approaches is the spatial resolution
methods to solve it), whereas in practice the value ranggding sought. The experimental leadfield was presented here
between 176 and 384 as a result of the variations betwegfl |imited in resolution to whole fascicles. Although thss i
trials. On the other hand, these numbers of variables we{gcyrate in the context of this study, in the more general
in all cases much smaller than what would be needed usifgse the limit is actually determined by the pathways that ca
a model-based distributed linear approach (corresponiingpe isolated experimentally and individually activatedhei

the algorithms described in Section II-A4), where the numbgyrough direct stimulation or through indirect means sush a
of variables could be on the order of thousands to tens @itaneous stimulation or passive limb motion. The pathways
thousands depending on the level of detail of the finite efémexncoded in the experimental leadfield could therefore, de-
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pending on the situation, be whole fascicles, sub-fasaicul
groups of axons, or functional groups of several fascicles.
Because of this need for experimental activation of specific
locations, the method is better suited to the peripheralener
case than to EEG/MEG or ECG localization, where accessing
specific regions individually is much more difficult. In the
case of recent studies that use leadfields obtained usimgecoa
models to identify fascicles [26], it is unclear what level
of performance would be obtained if finer resolution was
required. An experimental leadfield approach, on the other
hand, could possibly overcome this issue if small pathways
can be isolated experimentally. On a related note, the teesul o ‘ ‘ ‘ ‘
presented here are based on compound action potential (CAP) 0 20 singlefgathway &0 s rate %90) 7100
recordings. The signal-to-noise ratio is therefore higthan

what would be obtained during most natural activity (e.§]{1 Fig. 7. Relationship between the mean success rates of thepathway
[20]), which was helpful in assessing the methods but is le&as single-pathway cases as the threshold for considerpaghavay active is
realistic. The choice of stimulated rather than naturalraleu varied. The markers indicate the thresholds used in Figu@Z(x) and 1
activity in this study was motivated by the need to be able"

to simultaneously activate the pathways in any combination
If using the experimental leadfield in practice, it would b%
advisable to base the training set on the natural activity
different pathways, rather than direct stimulation. Irsthiay,
the training set will be more closely related to the activftsit
will be observed in practice.

[ = N N w
o 1 o (&2 o
T T T T

Mean multi-pathway success rate (%)

o
T

$comes a greater obstacle. As a result, sources of error
fllat were minor enough for the single-pathway cases to be
successful can become more significant in multi-pathwagsas
and prevent us from achieving successful discriminatidre T

of h dt llect | di ‘ nEture of these difficulties suggests several avenues bghwhi
course, the need 1o collect sample recordings 10r €agh o mance could be improved. First, more effective ragul
pathway of interest is a practical disadvantage of the ex-

. ! tion approaches tailored to this novel inverse probleoud
perimental leadfield approach compared to a model-ba ?I PP s 'S NOVE' INVETse p

h. but ai Hicient i ti ¢ sought. In particular, the addition of temporal inforioiat
approach, but given a suflicient Improvement in periormancg, , 4 e investigated, by taking into account the fact theat
this drawback does not seem insurmountable. Additional

o ) . ) atial patterns (i.e., experimental leadfield columnsjipced
a model-based leadfield's advantage in this respect is ° @a CAP travels along a pathway should occur in a specific

significant if no nerve-specific calibration of the model Brder. Temporal coupling between consecutive instantédcou

required. therefore be used to improve performance and ensure that
the resulting solution is physiologically plausible. Inditibn,

C. Outlook the influence on performance of the cuff geometry, number

f recording contacts, and the number and location of the

The success of the experimental leadfield method in the P : -
ascicles within the nerve are complex issues that will nequ

single-pathway cases confirms the findings in the “teraturrr?ore study, both to improve multi-pathway performance and
[141-{17], [19], [20] that nerve cuff recordings can in fact o\ o 1 transition from stimulated to natural nervevitgti

contain sufficient information to discriminate the actvibf ; . .
) ) . . The experimental leadfield approach provides a method by
different pathways, despite the fact that they increasaittie : . . :
which the influences of these different factors can be inves-

formity of the electric field around the nerve [40], [41]. Non tigated. In other words. a kev contribution of this paper is
of these previously reported studies, however, have peavid N ) X y pap

. to provide the first viable framework for the study of multi-
any suggestion of how the methods could be extended ?op ) . y
. A . . . pathway selective nerve cuff recordings.
the identification of multiple simultaneously active patys.
Source localization techniques provide a methodology for
reconstructing distributions with multiple sources, ad &g to ACKNOWLEDGMENT
deal with uncertainty in the measurements, and so have bee
investigated recently [23], [25]-[27]. Nonetheless, thipe o o .
g . y [23], [251-] .] _tys ﬁnd Dr. Dimitry Sayenko for their invaluable help with the
of method is vulnerable to modeling errors that will resu :
o . experiments.
in inaccurate forward problem solutions. The methodology
proposed here retains the advantages of the inverse problem
framework of bioelectric source localization, while renray REFERENCES
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