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Abstract—The task of discriminating the neural pathways
responsible for the activity recorded using a multi-contact nerve
cuff electrode has recently been approached as an inverse prob-
lem of source localization, similar to EEG source localization.
A major drawback of this method is that it requires a model
of the nerve, and that the localization performance is highly
dependent on the accuracy of this model. Using recordings from
a 56-contact “matrix” cuff electrode placed on a rat sciatic
nerve, we investigated a method that eliminates the need fora
model, and uses instead an “experimental” leadfield constructed
from a training set of experimental recordings. The resulting
pathway-identification task is solved using an inverse problem
framework. The experimental leadfield approach was able to
identify the correct branch in cases in which a single fascicle
was active with a success rate of 94.2%, but was not able
to reliably identify combinations of fascicles. Nevertheless, the
proposed methodology provides a framework for the study of
multi-pathway discrimination, within which methods to imp rove
performance can be investigated. Specifically, the influence of
nerve anatomy and electrode design should be examined, and
regularization approaches better suited to this novel inverse
problem should be sought.

Index Terms—Pathway discrimination, experimental leadfield,
multi-contact cuff electrode, nerve cuff selectivity, peripheral
nerve interface, rat sciatic nerve.

I. I NTRODUCTION

A Neuroprosthesis is a system in which an artificial device
interacts directly with the nervous system in order to

replace or enhance damaged function. Our focus here is on
implantable neuroprostheses that interact with the peripheral
nervous system: these systems can be used to help restore
function in subjects with spinal cord injuries, strokes, and
amputations. One current limitation of this type of technology
is that there is a need for more selective neural interfaces
capable of discriminating the electrical activity of different
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pathways within a nerve, and therefore allowing more so-
phisticated control of the neuroprosthesis. For example, by
monitoring specific pathways, sensory activity corresponding
to a particular location could be decoded and used as part
of closed-loop control algorithms for functional electrical
stimulation (FES) systems aiming to restore movement in
individuals with spinal cord injury or stroke (e.g. [1]–[3]).
Alternatively, in the case of amputations, efferent commands
to specific muscles could be extracted proximally to the injury
and used to control a prosthetic limb [4], [5].

A number of different peripheral nerve interfaces have been
proposed. Longitudinally implanted intrafascicular electrodes
(LIFE) [6], [7] have very high spatial resolution, but are
not able to provide coverage of the whole nerve. Intraneural
recordings obtained using micro-electrode arrays (MEA) [8]
combine spatially specific recordings with good coverage of
the nerve, and so are a potentially attractive option, but have
several drawbacks. MEAs may cause damage during chronic
implantation, are difficult to use for small nerves (due to
manufacturing considerations), and the recording stability over
time is poor [9]. Selective recording has also been attempted
with nerve cuff electrodes, using methods based either on con-
duction velocity [10]–[12], or on the spatial variations inthe
extraneural fields [13]–[20]. This second category of methods
either proposed approaches that were not easily generalizable
beyond two fascicles, or quantified the selectivity of the cuff
without proposing an approach to identify multiple sources
from the recordings. Nonetheless, the novel manufacturing
methods and nerve cuff designs of recent years [17], [21]
have resulted in nerve cuffs that provide greater amounts of
information, and have opened the door to new processing
approaches.

In order to generalize previous nerve cuff-based approaches
to selective recording and best take advantage of multi-contact
electrode designs, we have recently explored the idea of
using a source localization approach adapted from the field
of EEG source localization [22], [23]. Simulations and initial
experiments have indicated that in a 1 mm nerve surrounded
by a “matrix” design multi-contact spiral nerve cuff [24], one
of the crucial conditions for performance to be acceptable is to
have an accurate model of the nerve [23], [25]. The importance
of the model stems from the fact that the source configuration
can only be accurately reconstructed if we have a reasonably
good estimate of how a source at a given location would affect
the measurements.

Wodlinger et al. have explored a related approach and
shown recently that, in the case of a flat interface nerve
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cuff electrode placed on a large nerve, major fascicles can
be successfully identified using a beamforming approach with
knowledge only of the electrode geometry [26], [27]. These
results are promising and suggest that peripheral nerve source
localization approaches are worth pursuing further, however it
is unclear what resolution could be achievedin vivo without
a more acurate model of the nerve’s anatomy, or in the case
of combinations of several sources. The sensitivity of source
localization approaches to model accuracy therefore remains
of interest, particularly because current technology doesnot
allow us to obtain an accurate three-dimensional model of a
particular nervein vivo.

In the present study, we investigate a method that aims to
circumvent these issues by eliminating the dependency on a
model. Instead, a training set of data is collected experimen-
tally and then used as the empirical basis for the interpretation
of new data, while still remaining within an inverse problem
framework similar to that used in source localization. The
motivation for using such a framework is that it provides the
means to deal both with combinations of multiple sources and
with uncertainty in the measurements.

II. M ETHODS

A. Data collection

1) Surgical procedure:Five male Long-Evans rats (old
breeders, 640 g to 850 g) (Charles River Laboratories Inc.,
Wilmington, MA, USA) were used. The rats were acclimatized
for one week prior to use in the experiment, with food and
water providedad libitumand a 12 hour lights on/off cycle. All
animal care and use procedures conformed to those outlined
by the Canadian Council on Animal Care (CCAC).

All animals were anesthetized with a single bolus injection
of pentobarbital (60 mg/kg, intraperitoneal), and their lower
backs and legs shaved and treated with povidone-iodine. When
an adequate depth of anesthesia was attained (loss of corneal
reflex and loss of sharp pain sensation), the animals were
positioned prone on the operating table.

An oblique incision was centered over the posterior (dorsal)
aspect of the hip. The incision was extended proximally to
the midline and distally parallel with the fibers of the gluteus
maximus to the posterior margin of the greater trochanter. The
incision was then directed distally, parallel with the femoral
shaft to the posterior fossa of the knee. The deep fascia was
exposed and divided in line with the skin incision. By blunt
dissection, the gluteus maximus was split in line with its fibers
and retracted to expose the sciatic nerve and short external
rotator muscles. Care was taken not to disturb the superior
gluteal vessels in the proximal part of the exposure.

The sciatic nerve was exposed as far proximally as possible
to allow adequate exposure for application of the recording
cuff. The sciatic nerve was then followed distally and three
branches were identified: the sural nerve, peroneal nerve, and
tibial nerve. The soft tissue surrounding each of these nerves
was carefully blunt dissected to allow a stimulating cuff tobe
applied to each nerve. The three stimulating cuffs were applied
first, followed by the recording cuff on the sciatic nerve (see
details in the next section).

Fig. 1. Planar schematic of the matrix nerve cuff, 1 mm in diameter when
rolled. All dimensions are in millimeters.

2) Recording methods:A “matrix” design polyimide spiral
nerve cuff electrode [24] was used to record the nerve activity
during the experiments. The matrix cuff was 23 mm long,
1 mm in diameter and contained 7 rings of 8 contacts, for
a total of 56 contacts. The cuff, a diagram of which is
shown in Figure 1, was manufactured by placing a 300 nm
platinum film between two layers of Pyralin 2611 polyimide.
The resulting planar electrode was curled and placed in an
aluminum block, then tempered so as to remove mechanical
stress and ensure that the structure maintains a curled shape at
room temperature. Lastly, the electrode contacts were coated
with platinum black. The interconnection technology for the
device is described in [28]. The cuff was placed on the
sciatic nerve, just proximal to its division into its peroneal
and tibial branches (Figure 2(a)). In order to stimulate the
nerve branches, three tripolar polyimide spiral nerve cuffs (8
mm long and 1 mm in diameter) were placed around the
tibial, sural, and common peroneal nerves. The center ring
of the stimulating electrodes contained 8 contacts that were
shorted together to create traditional tripole cuffs. A schematic
of the cuff placements is shown in Figure 2(b). The rat sciatic
nerve is known to branch progressively into four fascicles,
which then become the tibial, peroneal, and sural nerves and
the much smaller cutaneous branch (not used here) [29].
This branching pattern was verified by histological analysis
(hematoxylin and eosin staining at 5 mm intervals along the
length of the recording cuff). Therefore, by stimulating the
tibial, peroneal, and sural nerves nerves distally, we can control
which of the fascicles is active at the level of the recording
cuff. This one-to-one correspondence between fascicles and
distal nerves does not always hold in the general case, but is
valid for the purpose of this study.

The measurements from the recording cuff were acquired
using a SynAmps2 64-channel amplifier (Neuroscan Inc.,
Herndon, VA, USA), with a sampling rate of 20 kHz and
a gain of 2010. The signals were band-pass filtered between
300 Hz and 3 kHz. The reference for the recordings was a
contact included in the matrix cuff design and located just
outside the cuff (Figure 1). A needle electrode in the calf was
used as the ground.
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(a)

(b)

Fig. 2. (a) 56-contact nerve cuff placed on the sciatic nerve, just proximally to
the branching into the tibial and peroneal nerves. (b) Schematic representation
of the position of the stimulating and recording nerve cuffs(not exactly to
scale)

The tibial, peroneal, and sural nerves were stimulated first
individually, then in every possible combination. The stimula-
tion pulses were generated using Compex Motion stimulators
(Compex SA, Switzerland), and had estimated durations of 2-4
µs and amplitudes in the 0.7 to 3.8 mA range approximately
(see Discussion section). These pulses were able to reliably
produce action potentials in the nerve, as indicated by muscle
twitches. 100 trials were conducted for each fascicle, at a
frequency of 2 Hz. A stimulation artefact was present because
the amplifiers were not blanked during the stimulation due to
equipment restrictions. The stimulation pulses did not overlap
with the neural signal, and the amplifiers did not saturate, but
they were susceptible to an impulse artefact with a time con-
stant of approximately 0.5 ms and thus overlapping with the
signal of interest. To compensate for this, the measurements
were converted to a common-average reference: the time series
from all channels were averaged together, and the resulting
average was subtracted from each of the time series, thereby
helping to eliminate elements that were common to all signals
(Figure 3).

3) Inverse problem and construction of the leadfield:
Bioelectric source localization is an inverse problem in which
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Fig. 3. Recordings of all 56 contacts for one trial in Rat 1, while the tibial
branch is being stimulated. The left plot show the raw data, recorded using
a point outside the cuff as the reference (see text). The right plot shows the
same data after conversion to a common average reference. The lines in bold
in both plots correspond to the recordings for one contact inthe middle ring
of the cuff, and illustrate the reduction of the stimulationartefact.

the bioelectric activity within a region (e.g. head, torso,
or nerve) is estimated using measurements obtained on the
boundary of that region. Solving the inverse problem requires
a solution to the forward problem, which predicts how a source
at any given location will affect the measurements at the
boundary. This information is encoded in a matrix known as
the leadfield. The relationship between the bioelectric sources
and the measurements can be expressed as shown in Equation
1, whered is an Mx1 vector containing the recorded data from
the M electrodes contacts,j is an Nx1 vector whose entries
represent the magnitudes of the current dipoles distributed
throughout the region under consideration, andL is the MxN
leadfield matrix whose entry (i,j) represents the influence of a
unit current at dipole j on the potential recorded at electrode
i. ǫ is an Mx1 vector of additive noise. M is typically much
smaller than N, making the problem ill-posed.

d = Lj + ǫ (1)

The source localization problem is then to recoverj based
on the measurements and the estimate ofL . Various algorithms
have been proposed to solve this problem, corresponding to
different ways to choose one of the infinite number of solutions
based ona priori criteria of what properties the solution
should have. Reviews are available for example in [30], [31].
In all cases, the solution is dependent onL , so an essential
component for any of these methods is to have an accurate
leadfield.

In EEG source localization, the leadfield is constructed
based on a finite-element or boundary-element model of the
head, which can incorporate patient-specific detail obtained
for example via MRI [31]. In the peripheral nerve case,
a finite-element model would be required because of the
anisotropic conductivity of the nerve [23]. Due to the difficulty
of obtaining appropriate nerve models, the method investigated
here is founded on the desire to eliminate the need for a model
entirely. Nonetheless, in order to solve the inverse problem,
we still require some way of obtaining a forward problem
solution. In the absence of a model, we rely instead on a
collection of experimentally-obtained measurements. Because
it is not feasible to experimentally isolate each possible
location of a dipolar source in the nerve, we focus instead
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on whole fascicles. The trade-off for eliminating the need for
a model is therefore to impose a stricter limitation on the
resolution. The task becomes one of pathway discrimination,
rather than geometric localization. Note that the method does
not assume that each stimulated pathway is an anatomically
distinct fascicle, only that the activity of each pathway is
located at a different position in the cross-section of the nerve.
Therefore, from here on we will use the term “pathway” rather
than “fascicle”, even though in the case of the rat sciatic nerve
the stimulation of each distal nerve results in the activation of
a separate fascicle at the level of the recording cuff.

We will use the term “experimental leadfield” to refer to a
collection of observed measurement vectors that is built using
a training set and will be used to classify future observations.
This leadfield is a matrix in which each column is a 56-element
vector corresponding to the measurements obtained from the
recording cuff at a given instant. The goal is to construct
a set of such vectors that are sufficiently representative of
the activity produced by each stimulated nerve to be able
to correctly identify future recordings by solving the inverse
problem. Each column in the leadfield constructed in this way
thus corresponds to an instantaneous spatial pattern of activity
produced by an entire stimulated pathway. Each pathway will
be associated with several vectors, because different patterns
of activity will be produced as a compound action potential
(CAP) travels in that pathway along the length of the recording
cuff. The goal of the proposed method is therefore to be able
to reconstruct the activity inside the nerve at a particulartime
instant. In this way, if sufficiently good spatial discrimination
can be achieved, it will be possible as a second step to
reconstruct the time course of the activity. In the present
study, however, we focus strictly on the spatial discrimination.
Because each pathway is associated with multiple patterns,
corresponding to different longitudinal positions of the CAP,
the method does not assume that the geometry of the branches
is constant along the length of the recording cuff.

The experimental leadfield is constructed using a training
set that includes only observations of single-pathway activity,
because the system should be able to identify combinations of
fascicles based only on its knowledge of the single-pathway
base cases. The process of constructing the experimental
leadfield is as follows. The main steps are summarized in
Figure 4.

1) Removal of bad channels:In each trial, if the signal from
a channel of the recording cuff has excessive variance
compared to the other channels (more than 4 standard
deviations away from the mean of the variances among
all channels) or very small amplitude (amplitude range
less than 0.1% of the greatest range among all channels),
it is marked as a bad channel, and not used in the
discrimination task. This removal is performed before
converting the remaining channels to a common average
reference.

2) Form training and testing sets:The trials are divided
into a training set and a testing set, for each of the seven
possible combinations of pathways (using the acronyms
T, P, and S for the cases where the tibial, peroneal,
and sural nerves are stimulated, respectively, the seven

Fig. 4. Flowchart illustrating the main steps of the experimental leadfield
construction process.

combinations are T, P, S, TP, TS, PS, and TPS). In the
case of the multi-pathway combinations, all trials belong
to the testing set. In each single-pathway case, the trials
are divided into 5 groups, and the performance will be
measured using 5-fold cross-validation. Accordingly, the
multi-pathway performance will be evaluated 5 times,
using a different training set each time but always the
same testing set (i.e., all multi-pathway trials).

3) Identify distinct patterns:The training set of each single-
pathway case is examined in order to identify the set of
distinct measurement vectors that occur within it. Each
new vector must be examined against all the previously
seen vectors in order to determine whether it is a new
pattern or one that has already been recorded. Ideally,
each trial should produce exactly the same activity, so
that a small number of patterns (corresponding to the
different positions of the CAP along the recording cuff)
should occur many times. In practice, this may not be
the case, due to noise and the slight movement of the
recording cuff.
For each trial, the measurement vectors used are from
a time interval delimited by the peaks of the action
potential recordings at the first and last contacts (ex-
cluding bad channels), plus 0.1 ms before and after this
interval. A collection of vectors is built using these time
instants from all the training set trials corresponding to
a given stimulated nerve. From this collection of vectors
we identify recurring patterns as follows.

a) Each vector is normalized with respect to its entry
with the largest absolute value.

b) Each new vector is compared to all previously
observed ones. A new vectorv2 is deemed to be
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the same as an existing vectorv1 if the condition in
Equation 2 holds true. The value of 0.3 was cho-
sen empirically as a means to obtain meaningful
groupings that allow for some variation in the in-
stances of a given pattern, while still distinguishing
patterns that genuinely reflect different sources of
activity.

||v1 − v2||2 < 0.3||v1||2 (2)

c) If a vector has not been observed before, it is added
to the set of distinct patterns. If the current vector
corresponds to an already observed pattern then,
for the purpose of future comparisons, each pattern
is represented by the mean of all its occurrences.

4) Eliminate unnecessary variables:Once all vectors have
been examined, any vector that occurred only once is
deemed not to be useful for identifying future observa-
tions and therefore is removed, in order to produce a
leadfield representing fewer, more meaningful variables.

5) Form experimental leadfield:The remaining vectors
are gathered to form the columns of the experimental
leadfield. The leadfield contains the vectors identified
for all of the single-pathway cases, but we keep track of
which columns correspond to which pathway.

4) Identification of pathway combinations:Once the lead-
field has been constructed according to the procedure in the
previous section, two situations can arise: the problem can
be either underdetermined or overdetermined. The far more
likely of the two, and the one dealt with here, is that of
an underdetermined problem: the number of measurements is
much smaller than the number of different patterns observed,
so that the leadfield has more columns than rows. This is
the same type of situation that typically arises when using a
model-based leadfield. Many of the principles needed in that
context to solve an ill-posed inverse problem can therefore
be applied here as well, and algorithms borrowed from EEG
source localization can still be used. Here, we use the common
approach known as Tikhonov regularization [32], which bal-
ances two objective: minimizing the residual, and minimizing
the norm of the solution, as expressed in Equation 3. The
corresponding solution then takes the form shown in Equation
4.

ĵ = argmin
j
{‖C−0.5

ǫ (Lj − d)‖2 + λ‖Hj‖2} (3)

ĵ = (HtH)−1Lt[L(HtH)−1Lt + λCǫ]
−1d (4)

d and L are as described in Equation 1.ĵ is the vector
of estimated source activations, each “source” in this case
corresponding to a given spatial pattern of potentials obtained
from the training set.Cǫ is the MxM noise covariance matrix,
here assumed to be the identity matrix.λ is the regularization
parameter, which is used to balance the accuracy of the
estimate and the simplicity of the solution. This parameteris
chosen using the L-curve method [33], which relies on finding
the “corner” on a plot of the norm of the residual versus the
norm of the solution. Lastly,H is an NxN matrix used to

assign different weights to the variables. Here, we use the
weighted minimum-norm method (WMN) [30], in whichH
simply compensates for the different norms of the leadfield
columns, as shown in Equation 5.

{

Hii = LT
1..M,iL1..M,i

Hij = 0, i 6= j
(5)

The appeal of WMN in this situation stems from its lack
of geometrical assumptions. Several source localization algo-
rithms rely on the fact that each variable corresponds to a
location in space, and that the activity at nearby locationsis
likely to be related [34], whereas in our case the variables
do not have this kind of geometrical relationships. It is also
apparent that a typical solution should consist of only a
small number of non-zero variables. Indeed, a CAP in a
given pathway should ideally correspond to a single column
of the experimental leadfield. Even considering a complex
source distribution involving several active pathways, the total
number of variable will still be fairly small. Accordingly,it is
reasonable to choose an inverse problem method that produces
sparse solutions. We choose for this purpose to use FOCUSS
[35], using as the initial estimate the WMN estimate. FOCUSS
is an iterative application of the WMN method, where the
weight matrixH at each step is a diagonal matrix whose entries
are based on the source estimates from the previous iteration.
In this way, locations that were found to have significant
activity in one iteration are favoured in the next iteration.
As the number of iterations increases, the activity becomes
concentrated in a small number of locations, and tends to
zero elsewhere. The process stops when the solution is no
longer changing significantly from one iteration to the next,
or if the number of nonzero elements in the solution starts to
increase. Like WMN, we regularize the FOCUSS algorithm
using Tikhonov regularization and the L-curve method.

5) Evaluation of the results:The columns of the experi-
mental leadfield correspond to instantaneous patterns of activ-
ity. Therefore, the pathway discrimination task is carriedout
at each time instant by solving the inverse problem. However,
to summarize the performance of the method, it is beneficial
to develop a more concise metric reflecting the activity over
the course of an entire trial. For this purpose, a set of three
values between 0 and 1 was computed, termed “activation
indices”, describing the relative estimated activations of the
three pathways during an entire trial. In what follows, the
estimate vector for a given time instant is denotedjt, the set
of variables corresponding to pathwayi is denotedsi and is
of sizeni, there arent time instants in a given trial, and the
3x1 vector of activation indices is denotedA. A0 denotes a
non-normalized version ofA used as an intermediate step in
the computations. The activation indices are then computedas
shown in Equations 6 through 8.

{

J|J1...(n1+n2+n3),t =
jt

‖jt‖∞

}

(6)

A0i =

∑

k⊂si

(∑nt

t=1 Jk,t

nt

)

ni

(7)
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A =

∣

∣

∣

∣

A0

‖A0‖∞

∣

∣

∣

∣

(8)

III. R ESULTS

When the experimental leadfield process described in the
Methods section was applied to the sciatic nerve recordings,
the number of columns in the 25 resulting leadfields (5-fold
cross-validation in each of 5 rats) ranged from 176 to 384.

Figure 5 shows the mean of the three activity estimates for
each pathway combination and each rat. These means are taken
on the agglomeration of the results in all 5 testing sets. The
figure reveals that in the single-pathway cases the algorithm
was successful in identifying the stimulated pathway as by far
the most active. Activity estimates of the other pathways were
in most cases small, but not insignificant. As for the multi-
pathway cases, the algorithm was less successful in identifying
the active pathways. Although a few cases were close to being
accurate (e.g. Rat 1, tibial + peroneal and tibial + sural),
inactive pathway activities estimates were still high, andon
the whole the method was not reliable.

Figure 5 gives a useful overview of the algorithm’s ability to
assess the activity of the different pathways. It would alsobe
useful to know how often the algorithm can correctly identify
the exact combination of active pathways. In order to measure
this aspect of the performance, the activity estimates computed
above were thresholded at 0.2. A pathway is deemed active
if it is above this threshold, and inactive otherwise. We then
computed the percentage of trials in which the combination
of active pathways is exactly accurate, for each pathway
combination and rat. The success rates were averaged across
the 5 testing sets, and the results are shown in Figure 6.

Figure 6 is in accordance with Figure 5 in showing that
the algorithm was more successful at correctly identifying
single-pathway cases than multiple-pathway ones. The mean
success rate over the 15 single-pathway cases was 68.5%, with
a minimum of 19.4% and a maximum of 95%. On the other
hand, the mean success rate over the 20 multiple-pathway
cases was 25.3%, with a minimum of 1.3% and a maximum
of 54.6%. Note that by consulting Figure 5, we can see that
single-pathway cases with low performance in Figure 6 were
likely due to inactive pathway erroneously being identified
as active, rather than the correct active pathway being missed.
The proportions of false positives and false negatives of course
depends on the threshold that we use. The use of 0.2 was an
attempt to balance the need of the single- and multi-pathway
cases. If we focus only on single-pathway cases, it is clear
from Figure 5 that the number of false positives in the single-
pathway cases could be reduced by raising the threshold. In
that case, we can simply select the pathway with the highest
activation, which is equivalent to setting the threshold to1,
since the activation indices are normalized to the highest of
the three values. This is illustrated in the second set of bars in
Figure 6, which is obtained in the same way as first set of bars
except with the threshold set to 1 instead of 0.2. This change
of threshold raises the mean success rate of the single-pathway
cases to 94.2%, and lowers that of the multiple-pathway cases
to 0%. The complete relationship between the multi-pathway
and single-pathway success rates as the threshold varies in

shown in Figure 7. As indicated on the figure, our initial
threshold choice of 0.2 corresponds to the corner of the curve.

IV. D ISCUSSION

We investigated a novel approach for pathway discrim-
ination in peripheral nerves, inspired by bioelectric source
localization but designed to avoid that method’s sensitivity to
its model-based forward problem solution. Rather than solve
the forward problem using a finite-element model, we built an
experimental leadfield using recordings corresponding to each
of the single-pathway cases of interest. Our goal was then to
use this leadfield to identify active pathways in both single-
and multi-pathway previously unseen cases. The approach was
evaluated on 56-channel recordings from a 1 mm-diameter
spiral cuff placed on a rat sciatic nerve. The reader should
keep in mind that the geometry of the cuff, the size of the
nerve and the layout of the fascicles may all have an impact
on the success of the pathway discrimination.

A. Technical issues

The intended stimulation parameters consisted of 10µs 2
mA pulses, 2 mA being comfortably higher than the thresholds
reported in the literature for pulses of this duration [15],[36]–
[38]. In practice, however, the parameters were somewhat dif-
ferent due to technical difficulties with the stimulators, leading
to the values described in the Methods section. As the pulses
were still able to produce CAPs, this issue has very limited
impact on our results. Indeed, knowledge of the specific fiber
recruitment obtained is not crucial to our study as long as it
is consistent between trials, because all that is required is that
the fascicles produce distinct spatial patterns. The second issue
was that the large number of channels of the recording cuff
created the need for a large and heavy connector that had to be
held in place manually in several experiments, such that there
may have been some slight movement of the recording cuff
over the course of a given experiment. Although both the cuff
movement and the presence of a stimulation artefact affect the
quality of the recordings, similar issues are to be expectedin
vivo, in the form of slight changes in cuff postion during limb
movements and the presence of nearby bioelectric sources such
as EMG. Therefore, although the experimental issues that we
encountered may have affected our results quantitatively,they
do not invalidate any of our qualitative conclusions regarding
the performance of an experimental leadfield in practice.

B. Advantages and disadvantages of an experimental leadfield
compared to a model-based leadfield

An important advantage of the experimental leadfield is that
the number of variables to solve for in the inverse problem is
much smaller than in the model-based approach. In the present
study, the number of columns in the experimental leadfields
shows that there was variability in the measurements: given
the 20 kHz sampling rate, the 23 mm length of the recording
cuff, and the conduction velocities of large fibers (36 to 120
m/s [39]), a CAP dominated by large fiber activity would take
approximately 4 to 13 time samples to propagate through the
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Fig. 5. Means of the activity indices for the three pathways,for each rat and pathway combination. The abbreviations areas follows: Tibial (T), Peroneal
(P), Sural (S), Tibial and Peroneal (TP), Tibial and Sural (TS), Peroneal and Sural (PS), and Tibial, Peroneal, and Sural(TPS). In each case, the nerves being
stimulated are outlined in red.

T  P  S  TP TS PS TPS
0

50

100

S
uc

ce
ss

 R
at

e 
(%

)

Rat 1

 

 

T  P  S  TP TS PS TPS
0

50

100

S
uc

ce
ss

 R
at

e 
(%

)

Rat 2

 

 

T  P  S  TP TS PS TPS
0

50

100

S
uc

ce
ss

 R
at

e 
(%

)

Rat 3

 

 

T  P  S  TP TS PS TPS
0

50

100

S
uc

ce
ss

 R
at

e 
(%

)

Rat 4

 

 

T  P  S  TP TS PS TPS
0

50

100

S
uc

ce
ss

 R
at

e 
(%

)

Rat 5

 

 

Threshold = 0.2
Threshold = 0.6

Fig. 6. Success rate for identifying the exact combination of active pathways, for each rat and pathway combination. Thestandard deviation is based on the
5 repetitions of the cross-validation process. The abbreviations are the same as in Figure 5. The threshold for a pathwayto be considered active is 0.2 in the
first set of bars, and 1 in the second set of bars.

cuff. In the ideal situation, therefore, the three pathwayswould
result in fewer than 40 columns in the experimental leadfield
(creating a overdetermined problem and calling for different
methods to solve it), whereas in practice the value ranged
between 176 and 384 as a result of the variations between
trials. On the other hand, these numbers of variables were
in all cases much smaller than what would be needed using
a model-based distributed linear approach (correspondingto
the algorithms described in Section II-A4), where the number
of variables could be on the order of thousands to tens of
thousands depending on the level of detail of the finite element

model and how fine a mesh is used.

Another crucial difference between the experimental and
model-based leadfield approaches is the spatial resolution
being sought. The experimental leadfield was presented here
as limited in resolution to whole fascicles. Although this is
accurate in the context of this study, in the more general
case the limit is actually determined by the pathways that can
be isolated experimentally and individually activated, either
through direct stimulation or through indirect means such as
cutaneous stimulation or passive limb motion. The pathways
encoded in the experimental leadfield could therefore, de-
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pending on the situation, be whole fascicles, sub-fascicular
groups of axons, or functional groups of several fascicles.
Because of this need for experimental activation of specific
locations, the method is better suited to the peripheral nerve
case than to EEG/MEG or ECG localization, where accessing
specific regions individually is much more difficult. In the
case of recent studies that use leadfields obtained using coarse
models to identify fascicles [26], it is unclear what level
of performance would be obtained if finer resolution was
required. An experimental leadfield approach, on the other
hand, could possibly overcome this issue if small pathways
can be isolated experimentally. On a related note, the results
presented here are based on compound action potential (CAP)
recordings. The signal-to-noise ratio is therefore higherthan
what would be obtained during most natural activity (e.g. [19],
[20]), which was helpful in assessing the methods but is less
realistic. The choice of stimulated rather than natural neural
activity in this study was motivated by the need to be able
to simultaneously activate the pathways in any combination.
If using the experimental leadfield in practice, it would be
advisable to base the training set on the natural activity of
different pathways, rather than direct stimulation. In this way,
the training set will be more closely related to the activitythat
will be observed in practice.

Of course, the need to collect sample recordings for each
pathway of interest is a practical disadvantage of the ex-
perimental leadfield approach compared to a model-based
approach, but given a sufficient improvement in performance,
this drawback does not seem insurmountable. Additionally,
a model-based leadfield’s advantage in this respect is only
significant if no nerve-specific calibration of the model is
required.

C. Outlook

The success of the experimental leadfield method in the
single-pathway cases confirms the findings in the literature
[14]–[17], [19], [20] that nerve cuff recordings can in fact
contain sufficient information to discriminate the activity of
different pathways, despite the fact that they increase theuni-
formity of the electric field around the nerve [40], [41]. None
of these previously reported studies, however, have provided
any suggestion of how the methods could be extended to
the identification of multiple simultaneously active pathways.
Source localization techniques provide a methodology for
reconstructing distributions with multiple sources, as well as to
deal with uncertainty in the measurements, and so have been
investigated recently [23], [25]–[27]. Nonetheless, thistype
of method is vulnerable to modeling errors that will result
in inaccurate forward problem solutions. The methodology
proposed here retains the advantages of the inverse problem
framework of bioelectric source localization, while removing
the dependency on accurate modeling.

The limited performance in the multi-pathway cases of
our study is primarily a reflection of the underdetermined
nature of the problem, coupled with the uncertainty in the
measurements. As the source configuration becomes more
complex, reconstruction becomes more difficult, and noise
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Fig. 7. Relationship between the mean success rates of the multi-pathway
and single-pathway cases as the threshold for considering apathway active is
varied. The markers indicate the thresholds used in Figure 6: 0.2 (×) and 1
(+).

becomes a greater obstacle. As a result, sources of error
that were minor enough for the single-pathway cases to be
successful can become more significant in multi-pathway cases
and prevent us from achieving successful discrimination. The
nature of these difficulties suggests several avenues by which
performance could be improved. First, more effective regular-
ization approaches tailored to this novel inverse problem shoud
be sought. In particular, the addition of temporal information
should be investigated, by taking into account the fact thatthe
spatial patterns (i.e., experimental leadfield columns) produced
as a CAP travels along a pathway should occur in a specific
order. Temporal coupling between consecutive instants could
therefore be used to improve performance and ensure that
the resulting solution is physiologically plausible. In addition,
the influence on performance of the cuff geometry, number
of recording contacts, and the number and location of the
fascicles within the nerve are complex issues that will require
more study, both to improve multi-pathway performance and
to make the transition from stimulated to natural nerve activity.
The experimental leadfield approach provides a method by
which the influences of these different factors can be inves-
tigated. In other words, a key contribution of this paper is
to provide the first viable framework for the study of multi-
pathway selective nerve cuff recordings.
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